give me all trigonometry formulas class 11
Answers
Answered by
1
sin(−θ)=−sinθcos(−θ)=cosθtan(−θ)=−tanθcosec(−θ)=−cosecθsec(−θ)=secθcot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=12[cos(x–y)−cos(x+y)]cosxcosy=12[cos(x–y)+cos(x+y)]sinxcosy=12[sin(x+y)+sin(x−y)]cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(x−y2)sinx−siny=2cos(x+y2)sin(x−y2)cosx+cosy=2cos(x+y2)cos(x−y2)cosx−cosy=–2sin(x+y2)sin(x−y2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB–cosAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A–B)=cosAcosB+sinAsinB
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=2tanA1–tan2A
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
sinA+sinB=2sinA+B2cosA−B2
Product to Sum Formulas
sinx siny=12[cos(x–y)−cos(x+y)]cosxcosy=12[cos(x–y)+cos(x+y)]sinxcosy=12[sin(x+y)+sin(x−y)]cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(x+y2)cos(x−y2)sinx−siny=2cos(x+y2)sin(x−y2)cosx+cosy=2cos(x+y2)cos(x−y2)cosx−cosy=–2sin(x+y2)sin(x−y2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB–cosAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A–B)=cosAcosB+sinAsinB
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=2tanA1–tan2A
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
sinA+sinB=2sinA+B2cosA−B2
Answered by
3
Similar questions
Hindi,
7 months ago
Computer Science,
7 months ago
Hindi,
1 year ago
Math,
1 year ago
Physics,
1 year ago