Math, asked by Subhash820, 11 months ago

Give me answer....?​

Attachments:

Answers

Answered by Anonymous
8

❏ Question:-

The sum of the 3rd and the 7th term of an AP series is 6 and their product is 8 . Find the 1st and the common difference of the AP.

Solution:-

✏ Given:-

  • \sf\longrightarrow a_{3}+a_{7}=6
  • \sf\longrightarrow a_{3}\times a_{7}=8

✏ To Find:-

  • Find the 1st term (a) =?
  • Common difference (d) =?

❏ Explanation:-

Let, "a" be the first term and "d" be the common difference .

Now ; we know that,

The n'th term is given by the formula .

\sf\longrightarrow\boxed{ a_n=a+(n-1)d   }

Sum of n number of terms ,

\sf\longrightarrow\boxed{ S_n=\frac{n[2a+(n-1)d]}{2}   }

Hence, 3rd term is (a_3)=a+(3-1)d=a+2d

And 7th term is (a_7)=a+(7-1)d=a+6d

➩ Condition 1

Sum of the 3rd and the 7th term of the AP series is 6.

\sf\longrightarrow a_3+a_7=(a+2d)+(a+6d)

\sf\longrightarrow 6=(2a+8d)

\sf\longrightarrow\boxed{ a+4d=3}

\sf\longrightarrow\boxed{ a=3-4d}.............(i)

➩ Condition 2

product of the 3rd and the 7th term of the AP series is 8.

\sf\longrightarrow a_3\times a_7=(a+2d)\times(a+6d)

\sf\longrightarrow 8=(3-4d+2d)(3-4d+6d)

\sf\longrightarrow 8=(3-2d)(3+2d)

\sf\longrightarrow 8=3^2-(2d)^2

\sf\longrightarrow 4d^2=9-8

\sf\longrightarrow d^2=\dfrac{1}{4}

\sf\longrightarrow d=\sqrt{\dfrac{1}{4}}

\sf\longrightarrow\boxed{ \red{\large{d=\dfrac{1}{2}}} }

Now, putting the value d=\dfrac{1}{2} in equation (i)

\sf\longrightarrow a=3-4\times(\dfrac{1}{2})

\sf\longrightarrow a=3-2

\sf\longrightarrow\boxed{ \red{\large{a=1}} }

∴ The first term is 1

∴ The common difference is = \dfrac{1}{2}

Similar questions