Math, asked by anantrajusharma, 1 year ago

give me answer and marked as brainest​

Attachments:

Answers

Answered by BrainlyConqueror0901
22

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

  \underline{\underline \bold{To \: Prove : } }\\ \implies tan^{2}  A \: sec^{2} A -  {sec}^{2}A \:  { tan}^{2} B =  {tan}^{2} A -  {tan}^{2} B

• According to given question :

  \underline{\underline \bold{Proof : }} \\  \implies tan^{2}  A\: sec^{2} B -  {sec}^{2} A \:  { tan}^{2} B=  {tan}^{2} A-  {tan}^{2} B \\  \\  \bold{Solving \:LHS } \\  \implies tan^{2}  A \times  sec^{2} B-  {sec}^{2} A  \times   { tan}^{2} B\\  \\  \implies  {tan}^{2} A \times (1 +  {tan}^{2} B) - (1 +  {tan}^{2} A) \times  {tan}^{2} B \\  \\  \implies  {tan}^{2}A+  {tan}^{2} A \times  {tan}^{2} B -  {tan}^{2} B +  {tan}^{2} A \times  {tan}^{2} B \\  \\   \bold{Taking \: common \:  {tan}^{2} A \times  {tan}^{2} B} \\  \implies  {tan}^{2} A\times  {tan}^{2} B( {tan}^{2} A-  {tan}^{2} B) -  -  -  -  - (1) \\  \\  \implies  {tan}^{2} A\times  {tan}^{2} B \\  \\  \implies ( \frac{p}{b} )^{2}  \times  ({ \frac{p}{b} })^{2}  \\  \\  \implies   ({ \frac{BC}{AB} })^{2}  \times   ({ \frac{AB}{BC} })^{2}  \\  \\  \implies  {tan}^{2} A \times  {tan}^{2}B =  1 -  -  -  -  - (2) \\  \\  \bold{Putting \: value \: of \: (2) \: in \: (1)} \\  \implies  {tan}^{2} A-  {tan}^{2} B \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{RHS \: Proved }

Attachments:
Answered by jatindevrajput
1

(1 + {tan}^{2} b) - (1 + {tan}^{2} a) \times {tan}^{2} b \\ \\ \implies {tan}^{2} a + {tan}^{2} a \times {tan}^{2} b - {tan}^{2} b + {tan}^{2} a \times {tan}^{2} b \\ \\ \bold{taking \: common \: {tan}^{2} a \times {tan}^{2} b} \\ \implies {tan}^{2} a \times {tan}^{2} b( {tan}^{2} a - {tan}^{2} b) - - - - - (1) \\ \\ \implies {tan}^{2} a \times {tan}^{2} b \\ \\ \implies ( \frac{p}{b} )^{2} \times ({ \frac{p}{b} })^{2} \\ \\ \implies ({ \frac{bc}{ab} })^{2} \times ({ \frac{ab}{bc} })^{2} \\ \\ \implies {tan}^{2} a \times {tan}^{2}b = 1 - - - - - (2) \\ \\ \bold{putting \: value \: of \: (2) \: in \: (1)} \\ \implies {tan}^{2} a - {tan}^{2} b \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{rhs \: proved } [/tex]

Similar questions