give me answer and marked as brainest
Answers
• According to given question :
(1 + {tan}^{2} b) - (1 + {tan}^{2} a) \times {tan}^{2} b \\ \\ \implies {tan}^{2} a + {tan}^{2} a \times {tan}^{2} b - {tan}^{2} b + {tan}^{2} a \times {tan}^{2} b \\ \\ \bold{taking \: common \: {tan}^{2} a \times {tan}^{2} b} \\ \implies {tan}^{2} a \times {tan}^{2} b( {tan}^{2} a - {tan}^{2} b) - - - - - (1) \\ \\ \implies {tan}^{2} a \times {tan}^{2} b \\ \\ \implies ( \frac{p}{b} )^{2} \times ({ \frac{p}{b} })^{2} \\ \\ \implies ({ \frac{bc}{ab} })^{2} \times ({ \frac{ab}{bc} })^{2} \\ \\ \implies {tan}^{2} a \times {tan}^{2}b = 1 - - - - - (2) \\ \\ \bold{putting \: value \: of \: (2) \: in \: (1)} \\ \implies {tan}^{2} a - {tan}^{2} b \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{rhs \: proved } [/tex]