Math, asked by APJKaushik, 8 months ago

Give me answer. This question belong to trigonometry.​

Attachments:

Answers

Answered by TantaryTauseef
2

After going through this you will get

sin2A + cos2A - 1 = 0

since sin2A + cos2A = 1

=> 1 - 1 = 0

Hence, proved.

Attachments:
Answered by Anonymous
2

GIVEN:

x =  \csc( \alpha )  +  \cos( \alpha )

y =  \csc( \alpha )  -  \cos( \alpha )

I LET A AS ALPHA.

TO PROVE :

( { \frac{2}{x + y} })^{2}  + ( { \frac{x - y}{2} })^{2}

TRIGONOMETRIC IDENTITY USED :

 { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  = 1

 \frac{1}{  \csc( \alpha ) }  =  \sin( \alpha )

NOW WE HAVE TO FIND

(x + y) \\ (x - y)

x + y =  \csc( \alpha )  +  \cos( \alpha )  +  \csc( \alpha )  -  \cos( \alpha )  \\ x + y  = 2 \csc( \alpha )

x - y =  \csc( \alpha )  +  \cos( \alpha )  -  \csc( \alpha )  +  \cos( \alpha )  \\ ( sign \: will \: change \: here) \\ x - y = 2 \cos( \alpha )

TAKING LHS :

( { \frac{2}{ \csc( \alpha ) } })^{2}  + ( { \frac{2 \cos( \alpha ) }{2} })^{2}  -  1

2 will cancelled out.

( { \frac{1}{ \csc( \alpha ) } }^{2}  + ( { \frac{2 \cos( \alpha ) }{1} }^{2}  - 1 \\ ( \frac{1}{ \csc( \alpha ) }  =  \sin( \alpha )

 { \sin( \alpha ) }^{2}  +  \cos( \alpha )^2  - 1 \\

1 - 1

0

LHS =RHS

HENCE PROVED

Similar questions