Math, asked by khushiradiya, 1 year ago

give me correct ans with easiest solution​

Attachments:

Answers

Answered by hkthakur302
5

Step-by-step explanation:

Taking x² = y

y + 1/y = 82/9

+1 = 82y/9

9y² - 82y +9 = 0

9y² - 81y - y +9 = 0

9y ( y-9) - 1 (y-9) = 0

(y-9)(9y-1) = 0

So, y = 9 or 1/9

and , x² = √9 or √1/9

x = 3 or 1/3.

Answered by Anonymous
14

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given,

 \large{ \sf{x {}^{2} +  \frac{1}{x {}^{2} } =  \frac{82}{9} }} \\

\sf{Adding \ 2x. \frac{1}{x} \ on \ both \ sides}

 \large{ \leadsto \:  \sf{x {}^{2} +  \frac{1}{x {}^{2} }   + 2.x. \frac{1}{x} =  \frac{82}{9}  + 2.x. \frac{1}{x}  }} \\  \\   \large{\leadsto \: \sf{x {}^{2} +  \frac{1}{x {}^{2} }  + 2.x. \frac{1}{x}  =   \frac{82}{9} + 2 }} \\  \\  \large{ \leadsto \:  \sf{(x +  \frac{1}{x} ) {}^{2} =  \frac{100}{9}  }} \\  \\  \large{ \leadsto \:  \sf{x +  \frac{1}{x}  =  \pm \sqrt{ \frac{100}{3} } }} \\  \\  \huge{ \leadsto \:  \mathtt{x +  \frac{1}{ x} } =  \pm \:  \frac{10}{3} }

When x + 1/x = 10/3,

 \implies \:  \sf{ x +  \: \frac{1}{x} =  \frac{10}{3}  } \\  \\  \implies \:  \sf{3x {}^{2}  - 10x +  3 = 0 } \\  \\  \implies \:  \sf{3x {}^{2} - 9x  -  x  + 3 = 0} \\  \\  \implies \:  \sf{(x - 3)(3x - 1) = 0} \\  \\  \huge{ \implies \:   \underline{ \boxed{\sf{x = 3 \: or \:  \frac{1}{3} }}}}

When x + 1/x = -10/3,

 \implies \:  \sf{x +  \frac{1}{x}  =   - \frac{ 10}{3} } \\  \\   \implies \:  \sf{3x {}^{2} + 3 =  - 10x } \\  \\  \implies \:  \sf{3x {}^{2}  + 10x + 3 = 0}

On comparing with ax² + bx + c = 0,

a = c = 3 and b = 10

Discriminant,d :

 \sf{d = (10) {}^{2}  - 4(3)(3)} \\  \\  \sf{d = 100 - 36} \\  \\  \huge{ \boxed{ \boxed{ \sf{d = 64}}}}

Applying the Quadratic Formula,

 \sf{x =  \frac{ - b \pm \sqrt{d} }{2a} } \\  \\  \rightarrow \:  \sf{x =  \frac{ - 10 \pm \:  \sqrt{64} }{6} } \\  \\  \rightarrow \:  \sf{x =  \frac{ - 10 \pm8}{6} } \\  \\  \rightarrow \:  \sf{x =   \frac{ - 5 \pm \: 4}{3} } \\  \\  \rightarrow \ \sf{x =  -  \frac{9}{3} \: \: or \:  \:   - \frac{ 1}{3}  } \\  \\  \huge{ \rightarrow \:   \underline{ \boxed{\sf{x =  - 3 \: or \:   - \frac{  1}{3} }}}}


Anonymous: well done
Similar questions