Math, asked by zobiyasayyed, 4 months ago

Give me correct answer​

Attachments:

Answers

Answered by Anonymous
12

Answer:

Refer to attachment

Third step Explanation:

{ \sf{We \:  know  \: that, { \boxed{{cos}^{2}A -  {sin}^{2} A = cos2A}}  }} \\  \\ :  { \implies{ \sf{ {cos}^{2} \frac{ \theta}{2}  -  {sin}^{2}  \frac{ \theta}{2}  = cos2 \bigg( \frac{ \theta}{2} \bigg)  }}} \\  \\ :  { \implies{ \sf{{cos}^{2} \frac{ \theta}{2}  -  {sin}^{2}  \frac{ \theta}{2}  =cos \cancel{2} \bigg( \frac{ \theta}{ \cancel{{2}}} \bigg) }}} \\  \\ : { \implies{ \sf{{cos}^{2} \frac{ \theta}{2}  -  {sin}^{2}  \frac{ \theta}{2} = cos \theta}}}

More identities:

sin² A + cos² A = 1

cos²A - Sin²A = Cos2A

1+tan² A = sec² A

cosec² A = 1 + cot² A

Attachments:
Answered by arpithmenon2018
0

tan

(

θ

2

)

+

cot

(

θ

2

)

=  

sin

(

θ

2

)

cos

(

θ

2

)

+

cos

(

θ

2

)

sin

(

θ

2

)

=  

sin

2

(

θ

2

)

+

cos

2

(

θ

2

)

sin

(

θ

2

)

cos

(

θ

2

)

=  

1

sin

(

θ

2

)

cos

(

θ

2

)

=  

2

2

sin

(

θ

2

)

cos

(

θ

2

)

=  

2

sin

θ

=  

2

csc

θ

Similar questions