Math, asked by llVanshuBaball, 2 days ago

Give Me Correct ✅ Answer Please

Attachments:

Answers

Answered by talpadadilip417
1

Question:-5

 \displaystyle \rm \:  \text{Evaluate \: :-} \int 5^{5^{x}} \cdot 5^{x} d x .

Solution:-

 \text{Given: \( \displaystyle \int \rm 5^{5^{x}} \cdot 5^{x} \cdot d x \)}

To Find: Evaluate

Solution:

 \text{ \( \displaystyle \rm I=\int 5^{5^{x}} \cdot 5^{x} \cdot d x \) put \(\displaystyle \rm 5^{x}=t  \)}

\begin{array}{}\displaystyle \rm \therefore 5^{x} \cdot \log 5 \cdot d x=1 d t  \\  \\ \displaystyle \rm 5^{x} \cdot d x=\frac{1}{\log 5} \cdot d t  \\  \\  \displaystyle \rm=\int 5^{t} \cdot \frac{1}{\log 5} \cdot d t  \\  \\ \displaystyle \rm I=\frac{1}{\log 5} \cdot \int 5^{t} \cdot d t  \\  \\ \displaystyle \rm =\frac{1}{\log 5} \cdot 5 t \cdot \frac{1}{\log 5}+c  \\  \\ \displaystyle \rm =\left(\frac{1}{\log 5}\right)^{2} \cdot 5^{ 5^{x}}+c \end{array}

Hence, answer is  \displaystyle \rm \red{\left(\frac{1}{\log 5}\right)^{2} \cdot 5 ^{5^{x}}+c . }

Similar questions