Math, asked by bernadethcariaga0, 6 months ago

give me five category of rational equation?​

Answers

Answered by pravalika21
18

Step-by-step explanation:

The function R(x) = (sqrt(x) + x^2) / (3x^2 - 9x + 2) is not a rational function since the numerator, sqrt(x) + x^2, is not a polynomial since the exponent of x is not an integer.

The function R(x) = (x - 4) / x^(-2/3) + 4 is not a rational function since the denominator, x^(-2/3) + 4, is not a polynomial since the exponent of x is not a non-negative integer.

The definition you just got might be a little overbearing, so let's look at some examples of rational functions:

The function R(x) = (x^2 + 4x - 1) / (3x^2 - 9x + 2) is a rational function since the numerator, x^2 + 4x - 1, is a polynomial and the denominator, 3x^2 - 9x + 2 is also a polynomial.

The function R(x) = (-2x^5 + 4x^2 - 1) / x^9 is a rational function since the numerator, -2x^5 + 4x^2 - 1, is a polynomial and the denominator, x^9, is also a polynomial.

The function R(x) = 1 / ((x - 1)(x^2 + 3)) is a rational function since the numerator, 1, is a polynomial (yes, a constant is still a polynomial) and the denominator, (x - 1)(x^2 + 3), is also a polynomial (it's just in a factored form).

answered by pravalika

plz follow me with ur kind heart

and thank me

Similar questions