Math, asked by TraptiBadnagre, 7 months ago

give me its answer only .. please ......
i will mark you brilliant​

Attachments:

Answers

Answered by Anonymous
31

Given :

  •  I = ∫ \frac{ x^2 + 1 }{ x^4 - x^2 + 1 } dx

To find :

  •  I = ∫ \frac{ x^2 + 1 }{ x^4 - x^2 + 1 } dx

According to the question :

 I = ∫ \frac{ x^2 + 1 }{ x^4 - x^2 + 1 } dx

 ∫ \frac{ x^2 + 1}{x^2 ( x^2 - 1 ) + ( \frac{1}{x^2})} dx

 ∫ \frac{1 + ( \frac{1}{x^2} )}{x^2 - 2 + ( \frac{1}{x^2} + 1 )} dx

 ∫ \frac{ 1 + ( \frac{1}{x^2} )}{x - ( \frac{1}{x})^2 + 1^2 } dx

Put :

 t = x - ( \frac{1}{x} )

 dt = ( 1 + ( \frac{1}{x^2} ) dx

 I = ∫ ( \frac{dt}{t^2 + 1^2}) dx

We get :

 I = tan^-1 ( t ) + C

 I = tan^-1 ( x - ( \frac{1}{x} ) + C

\bold{ I = tan^-1 ( \frac{x^2 - 1 }{ x } ) + C }

So, It's Done !!

Similar questions