Math, asked by lpspoonam9891, 5 hours ago

give me the answer of ques- 17 18



pls don't give irrelevant answers pls​

Attachments:

Answers

Answered by ItzBrainlyLords
2

 \large \underline{ \underline{ \rm \: question \: 17}} \\

Given equation :

  \\ \large \tt \leadsto { \left( \dfrac{3}{8}  \right) }^{ - 5}  \times { \left( \dfrac{16}{21}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\

take - 5 as common for L.H.S

  \\ \large \tt \implies{ \left( \dfrac{3}{8}   \times   \dfrac{16}{21}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\  \\  \\  \tt \implies{ \left( \dfrac{ \cancel3}{8}   \times   \dfrac{16}{ \cancel{21} \:  \: 7}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\  \\  \\  \tt \implies{ \left( \dfrac{1}{ \cancel8}   \times   \dfrac{ \cancel{16} \:  \: 2}{7}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\  \\ \\  \tt \implies{ \left(  \dfrac{2}{7}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\  \\

Since,

  • Bases are same, powers can be equated

 \\  \large\tt \implies{ \left(  \dfrac{2}{7}  \right) }^{ - 5}   = { \left( \dfrac{2}{7}  \right) }^{ x}   \\  \\  \\  \large \sf  \boxed{ \underline{ \sf \therefore \: \: x =  - 5}} \\

_____________________________________________

 \large \underline{ \underline{ \rm \: question \: 18}} \\

  • a ) 0.000127

 \large \tt \mapsto \:  \dfrac{127}{1000000}  \\  \\

  • b) 0.05

 \large \tt \mapsto \:  \dfrac{5}{100}  =  \frac{1}{20}  \\  \\

Similar questions