Math, asked by ravik666326, 11 months ago

give me the answer of this question​

Attachments:

Answers

Answered by Anonymous
30

\huge{\sf{\red{Given}}}\begin{cases}\longrightarrow P(6, 6) \\\longrightarrow Q(4, 4) \\\longrightarrow R(-1, -1) \end{cases}

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

★Plot these points on 'Cartesian Plane ' and check whether these points are co-linear.

\huge\bf{\red {\overbrace{\underbrace{\purple{Concept\:\:Used:}}}}}

★For checking colinearity we will use distance formula.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

Distance formula is

\large\red{\boxed{\purple{\sf{AB=\sqrt{(x_{2}-x_{1}) ^{2}+(y_{2}-y_{1}) ^{2}}}}}}

Where

Coordinate of A is (x_{1}, y_{1})

Coordinate of B is (x_{2}, y_{2})

_____________________________________

Distance between PQ,

\implies PQ =\sqrt{(6-4) ^{2}+(6-4) ^{2}}

\implies PQ =\sqrt{2^{2}+2^{2}}

\implies PQ =\sqrt{4+4}

\implies PQ =\sqrt{8}

{\underline{\boxed{\red{.\degree.PQ=2\sqrt{2}}}}}

______________________________________

Distance between QR,

\implies QR =\sqrt{[4-(-1)]^{2}+[4-(-1)]^{2}}

\implies QR =\sqrt{(4+1)^{2}+(4+1)^{2}}

\implies QR =\sqrt{5^{2}+5^{2}}

{\underline{\boxed{\purple{.°. QR = 5\sqrt{2}}}}}

______________________________________

Distance between PR,

\implies PR = \sqrt{[6-(-1)]^{2}+[6-(-1)]^{2}}

\implies PR =\sqrt{(7)^{2}+7^{2}}

\implies PR =\sqrt{49+49}

{\underline{\boxed{\orange{.°. PR = 7\sqrt{2}}}}}

______________________________________

We have

PQ=2√2

QR=5√2

PR=7√2.

It is clear that,

PQ+QR=PR

Therefore points P, Q & R are co-linear.

Attachments:
Answered by Anonymous
1

Step-by-step explanation:

hope \: it \: will \: help \: u

Attachments:
Similar questions