Geography, asked by Anonymous, 3 months ago

give me the comment of your views towards the story of the selfish giant in 150 words


koi toh sahi answer doo mereko story nahi chayiye comment about the story chayiye pls koi jaldi bhejo​

Answers

Answered by HolyGirl
0

Answer:

Given:

Vertices of Parallelogram – A(-2,-1), B(4,-1), C(0,2) and D(6,2).

The smaller coungruent sides of Parallelogram is having length of 3.6 units.

To Find:

Area of Parallelogram & Perimeter of Parallelogram.

Solution:

Diagonals of Parallelogram divides it into two congruent triangles, which are ∆ ABC and ∆ ACD.

Therefore,

Area of Parallelogram = Area of ∆ ABC + Area of ∆ ACD.

 \\

Formula for calculating Area of Triangle

 = \frac{1}{2} | x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) | \\ \\

\bf \underline{ For \: \triangle ABC :}

 (x_1 , y_1) = A(-2,-1),  (x_2,y_2)=B(4,-1),  (x_3,y_3)=C(0,2).

→ Area of ∆ ABC

 = \frac{1}{2} | x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) | \\

 = \frac{1}{2} \small { | -2 (-1 - 2) + 4(2 - (-1)) + 0(-1 - (-1)) |} \\

 = \frac{1}{2} | -2 (-3) + 4(2+1) + 0(-1 +1) | \\

 = \frac{1}{2} | 6 + 4(3) + 0(0) | \\

 = \frac{1}{2} | 6 + 12 + 0 | \\

 = \frac{1}{2} | 18 | \\

 = \frac{18}{2} \\

 = \cancel{\frac{18}{2}} \\

 \therefore \fbox {Area \: of \: ∆ ABC = 9 \: units.} \\ \\

 \bf \underline {For \: \triangle ACD :}

 (x_1 , y_1) = A(-2,-1),  (x_2,y_2)=D(6,2),  (x_3,y_3)=C(0,2).

→ Area of ∆ ACD

 = \frac{1}{2} | x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) | \\

 = \frac{1}{2} \small { | -2 (2 - 2) + 6(2 - (-1)) + 0(-1 - 2) |} \\

 = \frac{1}{2} | -2 (0) + 6(2+1) + 0(-3) | \\

 = \frac{1}{2} | 0 + 6(3) + 0 | \\

 = \frac{1}{2} | 0 + 18 + 0 | \\

 = \frac{1}{2} | 18 | \\

 = \frac{18}{2} \\

 = \cancel{\frac{18}{2}} \\

 \therefore \fbox {Area \: of \: ∆ ACD = 9 \: units.} \\

 \\

 \Rightarrow Area of Parallelogram = Area of ∆ ABC + Area of ∆ ACD.

 \therefore Area of Parallelogram = 9 units + 9 units

 \therefore \fbox {Area \: of \: Parallelogram = 18 \: units.} \\ \\

______________________

Perimeter of Parallelogram = 2(a + b)

where a = side and b = base of Parallelogram.

a = AD = 3.6 units (given), b = AB = ?

We can find base by using distance formula:

\bf \underline{ For \: line \: segment \: AB :}

 (x_1 , y_1) = A(-2,-1),  (x_2,y_2)=B(4,-1),

 AB = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}

 AB = \sqrt{(4-(-2))^2 + (-1-(-1))^2}

 AB = \sqrt{(4+2)^2 + (-1+1)^2}

 AB = \sqrt{(6)^2 + (0)^2}

 AB = \sqrt{36+0}

 \therefore \fbox{AB = 6 units = b} \\ \\

 \Rightarrow Perimeter of Parallelogram = 2(a + b)

= 2(3.6 + 6) units

= 2(9.6) units

 \therefore \fbox{ Perimeter \: of \:  Parallelogram = 19.2 \: units} \\ \\

Hence, the area of Parallelogram is 18 units and Perimeter of Parallelogram is 19.2 units.

Explanation:

Similar questions