Math, asked by wonderoflifescupers, 30 days ago

give me the solution and get 100 point free

Attachments:

Answers

Answered by sandy1816
1

given \:  \:  \:  \: x +  \frac{1}{x}  =  \sqrt{5}  \\ squaring \: both \: sides \\ ( {x +  \frac{1}{x} })^{2}  = 5 \\  (x -  \frac{1}{x} ) ^{2}  + 4 =5  \\ ( {x -  \frac{1}{x} })^{2}  = 1 \\ x -  \frac{1}{x}  =± 1 \\ finding \:  \:  \:  \:  {x}^{2}  -  \frac{1}{ {x}^{2} }  = (x -  \frac{1}{x} )(x +  \frac{1}{x} ) \\  = 1 \times  \sqrt{5}  \:  \:  \:  \:  (if \:  \:  \: x -  \frac{1}{x}  = 1)\\  =  \sqrt{5}  \\ or \\  {x}^{2}  -  \frac{1}{ {x}^{2} }  = ( - 1) \times  \sqrt{5}  \\  =  -  \sqrt{5} \:  \:  \:  \: (if \:  \:  \: x -  \frac{1}{x}  =  - 1)

Answered by milinchinnadura
0

Answer:

I don't appreciate your dis-honest behaviour. We only get 50 points but you told 100.

Similar questions