give me the solution of the above questions
Attachments:
Answers
Answered by
1
Explanation:
sin^−1(dy/dx)=x+y.∴sin(x+y)=dy/dx.
Let x+y=u.∴d/dx(x+y)=d/dx(u),i.e.,1+dy/dx=du/dx.
Subst.ing in the diff. eqn.,
sinu=du/dx−1,or,du/dx=1+sinu.
∴du/1+sinu=dx................[Separable Variable].
∴∫du/1+sinu=∫dx+c.
∴∫1−sinu/1−sin^2u×du=x+c,
or,∫1−sinu/cos^2u×du=x+c.
∴∫{1/cos^2u−sinu/cos^2u}du=x+c.
∴tanu−secu=x+c.
Letting u=x+y, we get the gen. soln. as under :
tan(x+y)−sec(x+y)=x+c.
sin^−1(dy/dx)=x+y.∴sin(x+y)=dy/dx.
Let x+y=u.∴d/dx(x+y)=d/dx(u),i.e.,1+dy/dx=du/dx.
Subst.ing in the diff. eqn.,
sinu=du/dx−1,or,du/dx=1+sinu.
∴du/1+sinu=dx................[Separable Variable].
∴∫du/1+sinu=∫dx+c.
∴∫1−sinu/1−sin^2u×du=x+c,
or,∫1−sinu/cos^2u×du=x+c.
∴∫{1/cos^2u−sinu/cos^2u}du=x+c.
∴tanu−secu=x+c.
Letting u=x+y, we get the gen. soln. as under :
tan(x+y)−sec(x+y)=x+c.
shivam71020:
HOPE IT HELPED :)
Similar questions
Science,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago