give one example of each kind of lever what will be the mechanical advantage of a machine If a part of the medicine is 400j and work done by it is 280j
Answers
Explanation:
Moving patients is a routine part of Jolene’s work as a MED floor RN, but in reality there is nothing routine about the biomechanics of lifting and transferring patients. In fact, “disabling back injury and back pain affect 38% of nursing staff” and healthcare makes up the majority of positions in the top ten ranking for risk of back injury, primarily due to moving patients. Spinal load measurements indicated that all of the routine and familiar patient handling tasks tested placed the nurse in a high risk category, even when working with a patient that “[had a mass of] only 49.5 kg and was alert, oriented, and cooperative—not an average patient.”[1] People are inherently awkward shapes to move, especially when the patient’s bed and other medical equipment cause the nurse to adopt awkward biomechanic positions. The forces required to move people are large to begin with, and the biomechanics of the body can amplify those forces by the effects of leverage, or lack thereof. To analyze forces in the body, including the effects of leverage, we must study the properties of levers.
LEVER CLASSES
The ability of the body to both apply and withstand forces is known as strength. One component of strength is the ability apply enough force to move, lift or hold an object with weight, also known as a load. A lever is a rigid object used to make it easier to move a large load a short distance or a small load a large distance. There are three classes of levers, and all three classes are present in the body[2][3]. For example, the forearm is a 3rd class lever because the biceps pulls on the forearm between the joint (fulcrum) and the ball (load).