Math, asked by ksupreet282, 9 months ago

Give possible a+b+c=9 and ab+bc+ca=26.Find a^2+b^2+c^2​

Answers

Answered by Anonymous
73

Answer:

 \boxed{\sf \sf {a}^{2}  +  {b}^{2}  +  {c}^{2} = 29}

Given:

 \sf a + b + c = 9 \\  \sf ab +  bc + ca = 26

To Find:

  \sf{a}^{2}  +  {b}^{2}  +  {c}^{2}

Step-by-step explanation:

 \sf \implies {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\  \\  \sf \implies {(a + b + c)}^{2} =   {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) \\ \\ \sf \implies {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)  = {(a + b + c)}^{2}  \\ \\ \sf \implies {a}^{2}  +  {b}^{2}  +  {c}^{2} = {(a + b + c)}^{2}  - 2(ab + bc + ca) \\ \\ \sf \implies {a}^{2}  +  {b}^{2}  +  {c}^{2} = {(9)}^{2}  - 2(26) \\ \\ \sf \implies {a}^{2}  +  {b}^{2}  +  {c}^{2} =81 - 52 \\ \\ \sf \implies {a}^{2}  +  {b}^{2}  +  {c}^{2} =29

Additional information:

Algebraic Formulae:

 \sf {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}  \\  \\ \sf  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}  \\  \\ \sf  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  \\ \sf { (a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ac) \\  \\ \sf {(a + b)}^{2}  +  {(a - b)}^{2}  = 2( {a}^{2}  -  {b}^{2} ) \\  \\ \sf {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab \\  \\ \sf {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) \\  \\ \sf {(a  -  b)}^{3}  =  {a}^{3}   -   {b}^{3}   -  3ab(a  -  b) \\  \\ \sf {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} ) \\  \\ \sf {a}^{3}   -  {b}^{3}  = (a  - b)( {a}^{2}   + ab +  {b}^{2} ) \\  \\ \sf {a}^{3}  +  {b}^{3}  +  {c}^{3}  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ac) + 3abc

Answered by Anonymous
24

\bf\large\mathfrak{\Green{\underline{\underline{Question:-}}}}

\tt Give\: possible \:a+b+c=9\\\tt and\: ab+bc+ca=26.\\\tt Find\:a^2+b^2+c^2=?

\bf\large\mathfrak{\Green{\underline{\underline{Solution:-}}}}

(a+b+c) 2 =a 2 +b 2 +c 2 +2ab+2bc+2ca

⟹(a+b+c) 2 =a 2 +b 2 +c 2 +2(ab+bc+ca)

⟹a 2 +b 2 +c 2 +2(ab+bc+ca)=(a+b+c) 2

⟹a 2 +b 2 +c 2 =(a+b+c) 2 −2(ab+bc+ca)

⟹a 2 +b 2 +c 2 =(9) 2 −2(26)

⟹a 2 +b 2 +c 2 =81−52

⟹a 2 +b 2 +c 2 =29

Hence,

⟹a 2 +b 2 +c 2 =29

Similar questions