Chemistry, asked by shanaya7854, 1 year ago

Give reason why BaSO4 will precipitate out when equal volumes of 2×10-3M BaCl2 solution and 2×10-4M Na2SO4 solution are mixed. given that the solubility product of BaSO4 is 1×10-10

Answers

Answered by Anonymous
29
\sf{BaCl_{2}} and \sf{Na_{2}SO_{4}} ionises completely in the solution.

\sf{BaCl_{2}} \longrightarrow \sf{Ba^{+2}} + \sf{2Cl^{-}}

\sf{[Ba^{+2}]} = \sf{[BaCl_{2}]}  =\boxed{2 \times {10}^{ - 3} \: M}


\sf{Na_{2}SO_{4}} \longrightarrow \sf{2Na^{+}} + \sf{SO_{4}^{-2}}

\sf{[Na_{2}SO_{4}]} = \sf{[SO_{4}^{-2}]}  =\boxed{2 \times {10}^{ - 4} \: M}


Equal volumes of the two solutions are mixed together, therefore, the concentration of \sf{Ba^{+2}} ions and \sf{SO_{4}^{-2}} ions after mixing will be:


\sf{[Ba^{+2}]}  = \frac{2 \times {10}^{ - 3} }{2} = \boxed{{10}^{ - 3} \: M}


\sf{[SO_{4}^{-2}]}  = \frac{2 \times {10}^{ - 4} }{2} =\boxed{{10}^{ - 4} \: M}


\text{Therefore,}

\text{Ionic\:product\:of:}

\sf{BaSO_{4}} = \sf{[Ba^{+2}]} \sf{[SO_{4}^{-2}]} =  \boxed{{10}^{ - 7} \: M}


\text{Here,}

Ionic product of \sf{BaSO_{4}} is greater than solubility product value. Hence, a precipitate of \sf{BaSO_{4}} will be formed.

Anonymous: Send me the link @mgarg4150 ☺️
shanaya7854: thank you Sir
Anonymous: ☺️
Similar questions