Physics, asked by doubts35, 5 months ago

give reasons ..
when a bus at rest suddenly moves forward , the passengers , standing in the bus , fall backward .​

Answers

Answered by zainabkachchawala
1

Answer:

because of motion

Explanation:

i hope its helpful.

please mark me brainliest and do follow me

Answered by Anonymous
8

Answer:

\huge{\underline{\underline{Part\:1→}}}

\bold{\underline{\underline{Given→}}}

\rm\green{Angle\:1=50°}

\rm\green{Angle\:2=60°}

\rm\green{Angle\:3=x}

\bold{\underline{\underline{To\:Find→}}}

\rm\purple{→The\:value\:of\:x}

\bold{\underline{\underline{Answer→}}}

According to Angle Sum Property:-

Angle 1 + Angle 2 + Angle 3 + =180°

\rm\blue{Angle\:1+Angle\:2+x=180°}

\rm\blue{→50°+60°+x=180°}

\rm\blue{→50°+60°+x=180°}

\rm\blue{→x+110=180°}

\rm\blue{→x=180°-110°}

\rm\blue{→x=70°}

\mathrm{\boxed{\boxed{\pink{→x=70°✔}}}}

\huge{\underline{\underline{Part\:2→}}}

Using Angle Sum Property:-

\rm\color{blue}{Angle\:1+Angle\:2+x=180°}

\rm\color{blue}{→60°+90°+x=180°}

\rm\color{blue}{→x+150°=180°}

\rm\color{blue}{→x=180°-150°}

\rm\color{blue}{→x=30°}

\mathrm{\boxed{\boxed{\pink{→x=30°✔}}}}

\huge{\underline{\underline{Part\:3→}}}

Using Angle Sum Property:-

\rm\color{steelblue}{Angle\:1+Angle\:2+x=180°}

\rm\color{steelblue}{→30°+110°+x=180°}

\rm\color{steelblue}{→x+140°=180°}

\rm\color{steelblue}{→x=180°-140°}

\rm\color{steelblue}{→x=40°}

\mathrm{\boxed{\boxed{\pink{→x=40°✔}}}}

\huge{\underline{\underline{Part\:4→}}}

Using Angle Sum Property:-

\rm\color{skyblue}{→50°+x+x=180°}

\rm\color{skyblue}{→50°+2x=180°}

\rm\color{skyblue}{→2x=180°-50°}

\rm\color{skyblue}{→2x=130°}

\rm\color{skyblue}{→x=\dfrac{130°}{2}}

\rm\color{skyblue}{→x=\dfrac{\red{\cancel{\color{skyblue}{130°}}}}{\red{\cancel{\color{skyblue}{2}}}}}

\rm\color{skyblue}{→x=65°}

\mathrm{\boxed{\boxed{\pink{→x=65°✔}}}}

\huge{\underline{\underline{Part\:5→}}}

Using Angle Sum Property:-

\rm\purple{Angle\:1+Angle\:2+Angle3=180°}

\rm\purple{→x+x+x=180°}

\rm\purple{→3x=180°}

\rm\purple{→x=\dfrac{180°}{3}}

\rm\purple{→x=\dfrac{\color{cyan}{\cancel{\purple{180°}}}}{\color{cyan}{\cancel{\purple{3}}}}}

\rm\purple{→x=60°}

\mathrm{\boxed{\boxed{\pink{→x=60°✔}}}}

\huge{\underline{\underline{Part\:6→}}}

Using Angle Sum Property:-

\rm\color{darkblue}{Angle\:1+Angle\:2+Angle3=180°}

\rm\color{darkblue}{→90°+2x+x=180°}

\rm\color{darkblue}{→90°+3x=180°}

\rm\color{darkblue}{→3x=180°-90}

\rm\color{darkblue}{→3x=90°}

\rm\color{darkblue}{→x=\dfrac{90°}{3}}

\rm\color{darkblue}{→x=\dfrac{\red{\cancel{\color{darkblue}{90°}}}}{\red{\cancel{\color{darkblue}{3}}}}}

\rm\color{darkblue}{→x=30°}

\mathrm{\boxed{\boxed{\pink{→x=30°✔}}}}

HOPE IT HELPS.

Similar questions