Math, asked by taranpreet27, 5 months ago

give solution on copy I will mark it as brainlist.. no spam answer ... class 10​

Attachments:

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\pink\bigstar\sf{Prove \: that}

\quad\rm{\dfrac{sinx-cosx+1}{sinx-cosx-1} =\dfrac{1}{secx-tanx}}

Solution :

LHS:

 \\   \quad\bigstar \large \sf \frac{sinx - cosx + 1}{sinx - cosx - 1}   \\  \\ \implies  \quad \large \sf  \frac{sinx + (1 - cosx)}{sinx - (1 - cosx)}  \\  \\  \implies \quad \large \sf \: \frac{2sin \frac{x}{2}cos \frac{x}{2} + 2 {sin}^{2} \frac{x}{2}   }{2 sin \frac{x}{2}cos \frac{x}{2}  - 2 {sin}^{2} \frac{x}{2}  } \\  \\  \quad  \implies\large \sf \  \frac{cos \frac{x}{2} +  sin\frac{x}{2}  }{cos \frac{x}{2}  - sin \frac{x}{2} }  \\  \\  \quad \implies \large \sf \:  \frac{cot \frac{x}{2} - 1 }{cot \frac{x}{2} + 1 }  = cot \bigg( \frac{ \pi}{4}  -  \frac{x}{2}  \bigg) \:  \\  \\  \quad \implies \large \sf \:  \frac{cos \bigg( \frac{\pi}{4}  -  \frac{x}{2} \bigg) \times sin \bigg( \frac{\pi}{4}   -  \frac{x}{2}  \bigg)}{sin \bigg( \frac{\pi}{4}  -  \frac{x}{2} \bigg) \times sin \bigg( \frac{\pi}{4}   -  \frac{x}{2} \bigg) }  \\  \\  \quad \implies \large  \sf \:  \frac{sin \bigg( \frac{\pi}{4} -  \frac{x}{2} \bigg)  }{1 - cos \bigg( \frac{\pi}{2}  - x \bigg)}  \\  \\ \quad \implies \large \sf \:  \frac{cosx}{1 - sinx}  \\  \\  \quad \implies \large \sf \:  \frac{1}{secx - tanx}

RHS:

Hence proved

Similar questions
Math, 2 months ago