give some formulae in trigonometry
Answers
1) cos2 A + sin2 A = 1.
2) cos2 A =1 - sin2 A.
3) sin2 A =1 - cos2 A.
4) sec2 A - tan2 A = 1.
5) 1 + tan2 A = sec2 A.
6) tan2 A = sec2 A – 1.
7) cosec2 A - cot2 A = 1.
8) cot2 A + 1 = cosec2 A.
9) cot2 A = cosec2 A – 1 .
10) sec A - tan A = 1sec A + tan A
11) cosec A - cot A = 1cosec A + cot A
✔️✔️✔️where 0 is the measure of the particular angle .
sin 0 = P/ H
cos 0 = B / H
tan 0 = P / B
cot 0 = B / P
sec 0 = H / B
cosec 0 = H / P
⭕️P= perpendicular of triangle.
⭕️ B = base of triangle
⭕️ H = hypotenuse of triangle.
Trigonometry Formulas :
• sinØ = P/H
• cosØ = B/H
• tanØ = P/B
• cosecØ = H/P
• secØ = H/B
• cotØ = B/P
____________________________
》 sin²Ø + cos²Ø = 1
› sin²Ø = 1 - cos²Ø
› cos²Ø = 1 - sin²Ø
》 1 + cot²Ø = cosec²Ø
› cot²Ø = cosec²Ø - 1
› cosec²Ø - cot²Ø = 1
》 1 + tan²Ø = sec²Ø
› tan²Ø = sec²Ø - 1
› sec²Ø - tan²Ø = 1
____________________________
• sinØ = 1/cosecØ
coecØ = 1/sinØ
• cosØ = 1/secØ
secØ = 1/cosØ
• tanØ = 1/cotØ
cotØ = 1/tanØ
____________________________
- At 0°
• sinØ = 0
• cosØ = 1
• tanØ = 0
• cosecØ = Not defined
• secØ = 1
• cotØ = Not defined
- At 30°
• sinØ = 1/2
• cosØ = √3/2
• tanØ = 1/√3
• cosecØ = 2
• secØ = 2/√3
• cotØ = √3
- At 45°
• sinØ = 1/√2
• cosØ = 1/√2
• tanØ = 1
• cosecØ = √2
• secØ = √2
• cotØ = 1
- At 60°
• sinØ = √3/2
• cosØ = 1/2
• tanØ = √3
• cosecØ = 2/√3
• secØ = 2
• cotØ = 1/√3
- At 90°
• sinØ = 1
• cosØ = 0
• tanØ = Not defined
• cosecØ = 1
• secØ = Not defined
• cotØ = 0
_____________________________