Math, asked by gungun78, 1 year ago

give tan 4/5 find the other trigonometric ratio of the angle A

Answers

Answered by Anonymous
5
tan = 4/5 =perpendicular /base

so hyp= 4^2 + 5^2 =16 +25 =41 or √41
sin a = p/ hyp =4/√41
cos a = b/h =5/√41
rest u can drive from it
Answered by Skidrow
14

let \:  \tan( \alpha )  =  \frac{4}{5}  \\ we \: know \: that \:  \tan( \alpha )  =  \frac{perpendicular}{base}  \:  \\ say \: perpendicular \:  = 4k \\  \:  \:  \:  \:  \:  \:  \:  \: base \:  =5k \:  \\ hypotenuse \:  =  \sqrt{ ({4k})^{2} +  ({5k})^{2}  }  =  \sqrt{41} \times k \\  \\ \sin( \alpha )   = \frac{perpendicular}{hypotenuse}  =  \frac{4k}{ \sqrt{41}k }  =  \frac{4}{ \sqrt{41} }  \\  \cos( \alpha )  =  \frac{base}{hypotenuse}  =  \frac{5k}{ \sqrt{41}k }  =  \frac{5}{ \sqrt{41} }  \\   \cot( \alpha ) =  \frac{1}{ \tan( \alpha ) }  =  \frac{5}{4}  \\  \sec( \alpha )  =  \frac{1}{ \cos( \alpha ) }  =  \frac{ \sqrt{41} }{5}  \\  \csc( \alpha )  =  \frac{1}{ \sin( \alpha ) }  =  \frac{ \sqrt{41} }{4}
Similar questions