Math, asked by swarajdhalia, 3 months ago

Give The Answer
Class 9
Maths
CBSE



don't spam​

Attachments:

Answers

Answered by Dinosaurs1842
8

Question :-

Factorize \longrightarrow \sf x^{4} + \dfrac{1}{x^{4}} + 1

Answer :-

  • In this question, no number has a common factor except 1

Notice that all the numbers are perfect squares.

\implies \sf (x^{2})^{2} + \dfrac{1}{(x^{2})^{2}} + 1

Expressing 1 as 2 - 1,

\implies \sf (x^{2}) + \dfrac{1}{(x^{2})^{2}} + 2 - 1

  • Applying identity (a+b)² = a² + b² + 2ab

\implies \sf \bigg [(x^{2})^{2} + \dfrac{1}{(x^{2})^{2}} + 2(x^{2} )\bigg(\dfrac{1}{x^{2} } \bigg)\bigg] - 1

\implies \sf \bigg( x^{2} + \dfrac{1}{x^{2} } \bigg)^{2} - 1

  • Applying identity a² - b² = (a+b)(a-b)

\implies \sf \bigg(x^{2} + \dfrac{1}{x^{2} } \bigg)^{2} - (1)^{2}

\implies \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} }\bigg) + 1\bigg]\bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg)-1\bigg]

Here expressing \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg) - 1\bigg]  the same way,

\implies \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg) + 1\bigg]\bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg)+ 2 - 1\bigg]

\implies \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg) + 1\bigg]\bigg[\bigg[x^{2} + \dfrac{1}{x^{2} y} + 2(x)\bigg(\dfrac{1}{x^{2} } \bigg)\bigg]- 1\bigg]

\implies \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg) + 1\bigg]\bigg[\bigg(x + \dfrac{1}{x} \bigg)^{2} - 1\bigg]

\implies \sf \bigg[\bigg(x^{2} + \dfrac{1}{x^{2} } \bigg) + 1\bigg]\bigg[\bigg(x+ \dfrac{1}{x} \bigg) - 1\bigg]\bigg[\bigg(x + \dfrac{1}{x} \bigg)+1\bigg]

Identities :-

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (x+a)(x+b) = x² + x(a+b) + ab
  • a²-b² = (a+b)(a-b)
  • (a+b)³ = a³ + 3a²b + 3ab² + b³
  • (a-b)³ = a³ - 3a²b + 3ab² - b³
  • a³+b³ = (a+b)(a² - ab + b²)
  • a³-b³ = (a-b)(a² + ab + b²)
  • a³+b³+c³ - 3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)
Answered by mathdude500
9

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {x}^{4}  + \dfrac{1}{ {x}^{4} }  + 1

 \sf \:  =  \:  \:  \dfrac{ {x}^{8} + 1 +  {x}^{4}  }{ {x}^{4} }

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {x}^{8}  + 2{x}^{4}   + 1 -  {x }^{4} \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \boxed{ \sf \: on \: adding \: and \: subtracting \:  {x}^{4} }

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {( {x}^{4} + 1) }^{2}  -  { ({x}^{2}) }^{2} \bigg)

  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \:  {x}^{2}  +  {y}^{2}  + 2xy =  {(x + y)}^{2}}

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {x}^{4} + 1 -  {x}^{2}  \bigg) \bigg( {x}^{4} + 1  +   {x}^{2}   \bigg)

  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \:  \because \:  {x}^{2} -  {y}^{2}   = (x + y)(x - y)}

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {x}^{4} + 1 -  {x}^{2}  \bigg) \bigg( {x}^{4}  + 1 +  {2x}^{2} -  {x}^{2}   \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \boxed{ \sf \: on \: adding \: and \: subtracting \:  {x}^{2} }

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {x}^{4} + 1 -  {x}^{2}  \bigg)\bigg(  {( {x}^{2} + 1) }^{2} -   {(x)}^{2}  \bigg)

 \sf \:  =  \:  \: \dfrac{1}{ {x}^{4} } \bigg(  {x}^{4} + 1 -  {x}^{2}  \bigg) \bigg(( {x}^{2} + 1 + x)( {x}^{2} + 1 - x)   \bigg)

 \sf \:  =  \:  \: \bigg( \dfrac{ {x}^{4} + 1 -  {x}^{2}  }{ {x}^{2} } \bigg) \bigg( \dfrac{ {x}^{2} + x + 1 }{x} \bigg) \bigg( \dfrac{ {x}^{2}  - x + 1}{x} \bigg)

 \sf \:  =  \:\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} } - 1  \bigg) \bigg( x + \dfrac{1}{x} + 1 \bigg) \bigg(x +  \dfrac{1}{x} - 1 \bigg)

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions