give the answer for class 7 math ex 6.3 question fourth part 1 question , but the answer should be in detail . if the answer will be in detail i will mark you brainliest
Answers
Hey upload the question as I haven't book of 7th
##Follow me so that I could help you
Answer:
Question 1.Find the value of unknown x in the following diagrams:
Answer:
(i) In ΔABC,
∠BAC + ∠ACB + ∠ABC = 180∘ [By angle sum property of a triangle]
⇒ x+50∘+60∘=180∘
⇒ x+110∘=180∘ ⇒ x=180∘–110∘=70∘
(ii) In ΔPQR,
∠RPQ + ∠PQR + ∠RPQ = 180∘ [By angle sum property of a triangle]
⇒ 90∘+30∘+x=180∘
⇒ x+120∘=180∘ ⇒ x=180∘–120∘=60∘
(iii) In ΔXYZ,
∠ZXY + ∠XYZ + ∠YZX = 180∘ [By angle sum property of a triangle]
⇒ 30∘+110∘+x=180∘
⇒ x+140∘=180∘ ⇒ x=180∘–140∘=40∘
(iv) In the given isosceles triangle,
x+x+50∘=180∘ [By angle sum property of a triangle]
⇒ 2x+50∘=180∘
⇒ 2x=180∘–50∘ ⇒ 2x=130∘
⇒ x=130∘2=65∘
(v) In the given equilateral triangle,
x+x+x=180∘ [By angle sum property of a triangle]
⇒ 3x=180∘
⇒ x=180∘3=60∘
(vi) In the given right angled triangle,
x+2x+90∘=180∘ [By angle sum property of a triangle]
⇒ 3x+90∘=180∘
⇒ 3x=180∘–90∘ ⇒ 3x=90∘
⇒ x=90∘3=30∘
NCERT Solutions for Class 7 Maths Exercise 6.3
Question 2.Find the values of the unknowns x and y in the following diagrams:
Answer:
(i) 50∘+x=120∘ [Exterior angle property of a Δ ]
⇒ x=120∘–50∘=70∘
Now, 50∘+x+y=180∘ [Angle sum property of a Δ ]
⇒ 50∘+70∘+y=180∘
⇒ 120∘+y=180∘ ⇒ y=180∘–120∘=60∘
(ii) y=80∘ ……….(i) [Vertically opposite angle]
Now, 50∘+x+y=180∘ [Angle sum property of a Δ ]
⇒ 50∘+80∘+y=180∘[From eq. (i)]
⇒ 130∘+y=180∘ ⇒ y=180∘–130∘=50∘
(iii) 50∘+60∘=x [Exterior angle property of a Δ ]
⇒ x=110∘
Now 50∘+60∘+y=180∘ [Angle sum property of a Δ ]
⇒ 110∘+y=180∘
⇒ y=180∘–110∘ ⇒ y=70∘
(iv) x=60∘ ……….(i) [Vertically opposite angle]
Now, 30∘+x+y=180∘ [Angle sum property of a Δ ]
⇒ 50∘+60∘+y=180∘ [From eq. (i)]
⇒ 90∘+y=180∘ ⇒ y=180∘–90∘=90∘
(v) y=90∘ ……….(i) [Vertically opposite angle]
Now, y+x+x=180∘ [Angle sum property of a Δ ]
⇒ 90∘+2x=180∘ [From eq. (i)]
⇒ 2x=180∘–90∘ ⇒ 2x=90∘
⇒ x=90∘2=45∘
(vi) x=y ……….(i) [Vertically opposite angle]
Now, x+x+y=180∘ [Angle sum property of a Δ ]
⇒ 2x+x=180∘ [From eq. (i)]
⇒ 3x=180∘ ⇒ x=180∘3=60∘