Math, asked by ayush160808, 2 months ago

give the answer in step by step only ​

Attachments:

Answers

Answered by abdulraseed9993
2

Step-by-step explanation:

I hope you got this answer

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Question is

\rm :\longmapsto\: \sqrt[3]{4\dfrac{508}{1331} }

Let we first convert this mixed fraction to simplest fraction form.

\rm  \:  =  \: \: \sqrt[3]{\dfrac{1331 \times 4 + 508}{1331} }

\rm  \:  =  \: \: \sqrt[3]{\dfrac{5324 + 508}{1331} }

\rm  \:  =  \: \: \sqrt[3]{\dfrac{5832}{1331} }

\rm  \:  =  \: \:\dfrac{ \sqrt[3]{5832} }{ \sqrt[3]{1331} }

\red{\bigg \{ \because \:  \sqrt[3]{\dfrac{x}{y} }  = \dfrac{ \sqrt[3]{x} }{ \sqrt[3]{y} }\bigg \}}

Let now find the prime factorization of 5832 and 1331.

Consider,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 1331}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{11}}}&{\underline{\sf{\:\:1331 \:\:}}}\\ {\underline{\sf{11}}}& \underline{\sf{\:\:121\:\:}} \\\underline{\sf{11}}&\underline{\sf{\:\:11 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 1331 = 11 \times 11 \times 11}

\rm :\longmapsto\: \sqrt[3]{1331}

\rm  \:  =  \: \: \sqrt[3]{ \underbrace{11 \times 11 \times 11}}

\rm  \:  =  \: \:11

\bf\implies \: \sqrt[3]{1331} = 11

Now,

Consider,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 5832}

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:5832 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:2916 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:1458\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:729 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:81 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 5832}

\rm  \:  =  \: \:2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3

Hence,

\rm :\longmapsto\: \sqrt[3]{5832}

\rm  \:  =  \: \: \sqrt[3]{ \underbrace{2 \times 2 \times 2} \times  \underbrace{3 \times 3 \times 3} \times  \underbrace{3 \times 3 \times 3}}

\rm  \:  =  \: \:2 \times 3 \times 3

\rm  \:  =  \: \:18

\bf :\implies\: \sqrt[3]{5832} = 18

Therefore,

\rm :\longmapsto\:\dfrac{ \sqrt[3]{5832} }{ \sqrt[3]{1331} }  = \dfrac{18}{11} = 1 \: \dfrac{7}{11}

Hence,

 \purple{\bf :\longmapsto\: \sqrt[3]{4\dfrac{508}{1331} }  = 1 \: \dfrac{7}{11} }

Additional Information :-

1. Each prime factor appear thrice in its cube root if its a perfect cube.

2. Cubes of all even number is even.

3. Cube of all odd number is odd.

4. Cube root of a negative perfect cube is negative.

5. Method of finding cube roots

There are two methods to find the cube root

1. Prime factorization method

2. Using unit digit method

Similar questions