Math, asked by shashankshahuikey, 6 months ago

Give the answer of the 3 question ​

Attachments:

Answers

Answered by sethrollins13
62

Given :

  • Three angles of triangle are (x+10°) , (2x+30°) and x° .

To Find :

  • Value of x .

Solution :

As we know that Sum of all angles of a triangle is 180° . So ,

\longmapsto\tt{x+10^{\circ}+2x-30^{\circ}+x^{\circ}=180^{\circ}}

\longmapsto\tt{4x^{\circ}+10^{\circ}-30^{\circ}=180^{\circ}}

\longmapsto\tt{4x^{\circ}-20^{\circ}=180^{\circ}}

\longmapsto\tt{4x^{\circ}=180^{\circ}+20^{\circ}}

\longmapsto\tt{4x^{\circ}=200}

\longmapsto\tt{x=\cancel\dfrac{200}{4}}

\longmapsto\tt\bf{x=50^{\circ}}

Value of x is 50° ..

_______________________

VERIFICATION :

\longmapsto\tt{x+10^{\circ}+2x-30^{\circ}+x=180^{\circ}}

\longmapsto\tt{50^{\circ}+10^{\circ}+2(50)-30^{\circ}+50^{\circ}=180^{\circ}}

\longmapsto\tt{60^{\circ}+100^{\circ}-30^{\circ}+50^{\circ}=180^{\circ}}

\longmapsto\tt{160^{\circ}+50^{\circ}-30^{\circ}=180^{\circ}}

\longmapsto\tt{210^{\circ}-30^{\circ}=180^{\circ}}

\longmapsto\tt\bf{180^{\circ}=180^{\circ}}

HENCE VERIFIED

Answered by Anonymous
39

\huge{\underline{\boxed{\bf{Given}}}}

  • 1st angle = x + 10°
  • 2nd angle = 2x - 30°
  • 3rd angle = x°

\huge{\underline{\boxed{\bf{Find}}}}

  • What will be the value of x

\huge{\underline{\boxed{\bf{Diagram}}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$} \put(1.4,0.3){$\bf {x}^{\circ}$}\put(2.7,2.4){$\bf {x+10}^{\circ}$}  \put(3.2,0.2){$\bf {2x-30}^{\circ}$} \end{picture}

\huge{\underline{\boxed{\bf{Solution}}}}

we, know that

\underbrace{\underline{\boxed{\sf \angle A + \angle B + \angle C =  {180}^{ \circ}}}}

where,

  • \angle A = x + 10°
  • \angle B = 2x - 30°
  • \angle C = x°

So,

 \dashrightarrow\sf \angle A + \angle B + \angle C =  {180}^{ \circ} \\  \\

 \dashrightarrow\sf x + 10  + 2x - 30 + x =  {180}^{ \circ} \\  \\

 \dashrightarrow\sf x + 2x + x - 20=  {180}^{ \circ} \\  \\

 \dashrightarrow\sf 4x - 20=  {180}^{ \circ} \\  \\

 \dashrightarrow\sf 4x= 180  +  20\\  \\

 \dashrightarrow\sf 4x=200\\  \\

 \dashrightarrow\sf x= \dfrac{200}{4}\\  \\

 \dashrightarrow\sf x={50}^{\circ}\\  \\

\qquad\quad_____________

Hence, x = 50°

Attachments:
Similar questions