Math, asked by prashantjain111, 1 year ago

give the answer of this question in detail

Attachments:

Answers

Answered by siddhartharao77
1
Given :  x =  \frac{ \sqrt{3}+  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}}

On rationalizing, we get

 \frac{ (\sqrt{3} +  \sqrt{2} )( \sqrt{3} +  \sqrt{2})   }{( \sqrt{3} -  \sqrt{2} )( \sqrt{3} +  \sqrt{2})   }

 \frac{ (\sqrt{3} +  \sqrt{2})^2 }{( \sqrt{3})^2 - ( \sqrt{2} )^2 }

( \sqrt{3} +  \sqrt{2})^2

( \sqrt{3} )^2 + 2 *  \sqrt{3} *  \sqrt{2} + ( \sqrt{2} )^2

3 + 2 \sqrt{6} + 2

5 + 2 \sqrt{6} .


 Now,

 \frac{x - y}{ x - 3y} =  \frac{(5 + 2 \sqrt{6} - 1) }{(5 + 2 \sqrt{6} - 3(1)) }

                                     =  \frac{5 + 2 \sqrt{6} - 1 }{5 + 2 \sqrt{6} - 3}

                                      = \frac{4 + 2 \sqrt{6} }{2 + 2 \sqrt{6} }

                                     =  \frac{2(2 +  \sqrt{6}) }{2(1 +  \sqrt{6}) }

                                    =  \frac{2 +  \sqrt{6} }{1 +  \sqrt{6} }

                                    =  \frac{(2 +  \sqrt{6} )(1 -  \sqrt{6} )}{(1 +  \sqrt{6})(1 -  \sqrt{6})  }

                                    =  \frac{2 * 1  - 2 \sqrt{6} +  \sqrt{6} * 1 -  \sqrt{6} *  \sqrt{6}  }{1^2 - ( \sqrt{6})^2 }

                                     \frac{2 -  \sqrt{6} -  \sqrt{6} *  \sqrt{6}  }{-5}

                                     \frac{2 -  \sqrt{6}  - 6}{-5}

                                     \frac{-4 -  \sqrt{6} }{-5}

                                    \frac{4 +  \sqrt{6} }{5}




Hope this helps!

prashantjain111: Thanks u r genius
prashantjain111: can u give your whatsapp number so that when I upload a question in brainly I will inform u
siddhartharao77: I won't use whatsapp. You post the question directly i will try to help.
prashantjain111: You give ur monile number I send text message for u
prashantjain111: mobile
prashantjain111: I am upload a question again
prashantjain111: I upload a question plz solve this
xprt12321: hii
xprt12321: i can solve ur questions
xprt12321: because i love mathematics
Answered by Anonymous
0
Hi,

Please see the attached file!


Thanks
Attachments:
Similar questions