give the correct answer...?
Answers
Answer:
Let us consider a and b where a be any positive number and b is equal to 3.
According to Euclid’s Division Lemma
a = bq + r
where r is greater than or equal to zero and less than b (0 ≤ r < b)
a = 3q + r
so r is an integer greater than or equal to 0 and less than 3.
Hence r can be either 0, 1 or 2.
Case 1: When r = 0, the equation becomes
a = 3q
Cubing both the sides
a3 = (3q)3
a3 = 27 q3
a3 = 9 (3q3)
a3 = 9m
where m = 3q3
Case 2: When r = 1, the equation becomes
a = 3q + 1
Cubing both the sides
a3 = (3q + 1)3
a3 = (3q)3 + 13 + 3 × 3q × 1(3q + 1)
a3 = 27q3 + 1 + 9q × (3q + 1)
a3 = 27q3 + 1 + 27q2 + 9q
a3 = 27q3 + 27q2 + 9q + 1
a3 = 9 ( 3q3 + 3q2 + q) + 1
a3 = 9m + 1
Where m = ( 3q3 + 3q2 + q)
Case 3: When r = 2, the equation becomes
a = 3q + 2
Cubing both the sides
a3 = (3q + 2)3
a3 = (3q)3 + 23 + 3 × 3q × 2 (3q + 1)
a3 = 27q3 + 8 + 54q2 + 36q
a3 = 27q3 + 54q2 + 36q + 8
a3 = 9 (3q3 + 6q2 + 4q) + 8
a3 = 9m + 8
Where m = (3q3 + 6q2 + 4q)therefore a can be any of the form 9m or 9m + 1 or, 9m + 8.
Question:-
☞Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
_______________________________
Solution:-
Let x be any positive integer and y = 3.
By Euclid’s division algorithm, then,
x = 3q+r, where q≥0 and r = 0, 1, 2, as r ≥ 0 and r < 3.
Therefore, putting the value of r, we get,
x = 3q
or
x = 3q + 1
or
x = 3q + 2
Now, by taking the cube of all the three above expressions, we get,
Case (i):
When r = 0, then,
where m =
Case (ii):
When r = 1, then,
Taking 9 as common factor, we get,
Putting = m, we get,
Putting= m, we get ,
= 9m+1
Case (iii):
When r = 2, then,
Taking 9 as common factor, we get,
Putting = m, we get ,
= 9m+8
Therefore, from all the three cases explained above, it is proved that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.
______________________________
Hope it helps you!☺️.