Math, asked by anshika1632, 1 year ago

give the derivative of √a+√x/√a-√x

Attachments:

Answers

Answered by rahul311099
20
answer of this is here by picture
Attachments:

anshika1632: Please give me the solution , I know the answer
rahul311099: okk
Answered by harendrachoubay
1

The first derivative is {\dfrac{(a-x)(1+\sqrt{a}+\sqrt{a}\dfrac{1}{\sqrt{x}})-(a+x+2\sqrt{a}\sqrt{x})(-1)}{(a-x)^{2}}}

Step-by-step explanation:

Let y=\dfrac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}

To find, derivative of \dfrac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}=?

y=\dfrac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}\times \dfrac{\sqrt{a}+\sqrt{x}}{\sqrt{a}+\sqrt{x}}

=\dfrac{(\sqrt{a}+\sqrt{x})^2}{\sqrt{a}^2-\sqrt{x}^2}=\dfrac{a+x+2\sqrt{a}\sqrt{x}}{a-x}

We know that,

\dfrac{d(\dfrac{u}{v} )}{dx} =\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx} }{v^{2}}

={\dfrac{(a-x)(1+\sqrt{a}+2\sqrt{a}\dfrac{1}{2\sqrt{x}})-(a+x+2\sqrt{a}\sqrt{x})(-1)}{(a-x)^{2}}}

Hence, the first derivative is {\dfrac{(a-x)(1+\sqrt{a}+\sqrt{a}\dfrac{1}{\sqrt{x}})-(a+x+2\sqrt{a}\sqrt{x})(-1)}{(a-x)^{2}}}

Similar questions