Math, asked by aswathibimal, 9 months ago

Give the geometric representation of x= 2 as an equation in one variable.​

Answers

Answered by Anonymous
2


mysticd 

 

Genius

From figure ( i ),

Consider the equation x = 2 .

If this is treated as an equation in

one variable x, then it has the unique

solution x = 2 which is a point on

the number line .

ii ) from figure ( ii ),

When x = 2 treated as an equation

in two variables and plotted on the 

coordinate plane it can be expressed

as x + 0×y - 2 = 0.

••••

This has infinitly many solutions.

&lt;!DOCTYPE html&gt;<br /><br /> &lt;html&gt;<br /><br />     &lt;head&gt;<br /><br />         &lt;title&gt;3D Animation&lt;/title&gt;<br /><br />     &lt;/head&gt;<br /><br />     &lt;body&gt;<br /><br />         &lt;div class="stage" style="width: 120px; height: 120px;"&gt;<br /><br />             &lt;div class="cubespinner"&gt;<br /><br />                 &lt;div class="face1"&gt;itz&lt;/div&gt;<br /><br />                 &lt;div class="face2"&gt;aniket&lt;/div&gt;<br /><br />                 &lt;div class="face3"&gt;Superstar&lt;/div&gt;<br /><br />                 &lt;div class="face4"&gt;helper&lt;/div&gt;<br /><br />                 &lt;div class="face5"&gt;Phenomenol&lt;/div&gt;<br /><br />                 &lt;div class="face6"&gt;Pro killer&lt;/div&gt;<br /><br />             &lt;/div&gt;<br /><br />         &lt;/div&gt;<br /><br /> &lt;style&gt;<br /><br /> body  {<br /><br />     margin: 100px 50px 50px 50px;<br /><br /> }<br /><br /><br /><br />   @-webkit-keyframes spincube {<br /><br />     from,to  { -webkit-transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg); }<br /><br />     16%      { -webkit-transform: rotateY(-90deg); }<br /><br />     33%      { -webkit-transform: rotateY(-90deg) rotateZ(90deg); }<br /><br />     50%      { -webkit-transform: rotateY(-180deg) rotateZ(90deg); }<br /><br />     66%      { -webkit-transform: rotateY(-270deg) rotateX(90deg); }<br /><br />     83%      { -webkit-transform: rotateX(90deg); }<br /><br />   }<br /><br /><br /><br />   @keyframes spincube {<br /><br />     from,to {<br /><br />       -moz-transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg);<br /><br />       -ms-transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg);<br /><br />       transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg);<br /><br />     }<br /><br />     16% {<br /><br />       -moz-transform: rotateY(-90deg);<br /><br />       -ms-transform: rotateY(-90deg);<br /><br />       transform: rotateY(-90deg);<br /><br />     }<br /><br />     33% {<br /><br />       -moz-transform: rotateY(-90deg) rotateZ(90deg);<br /><br />       -ms-transform: rotateY(-90deg) rotateZ(90deg);<br /><br />       transform: rotateY(-90deg) rotateZ(90deg);<br /><br />     }<br /><br />     50% {<br /><br />       -moz-transform: rotateY(-180deg) rotateZ(90deg);<br /><br />       -ms-transform: rotateY(-180deg) rotateZ(90deg);<br /><br />       transform: rotateY(-180deg) rotateZ(90deg);<br /><br />     }<br /><br />     66% {<br /><br />       -moz-transform: rotateY(-270deg) rotateX(90deg);<br /><br />       -ms-transform: rotateY(-270deg) rotateX(90deg);<br /><br />       transform: rotateY(-270deg) rotateX(90deg);<br /><br />     }<br /><br />     83% {<br /><br />       -moz-transform: rotateX(90deg);<br /><br />       -ms-transform: rotateX(90deg);<br /><br />       transform: rotateX(90deg);<br /><br />     }<br /><br />   }<br /><br /><br /><br />   .cubespinner {<br /><br />     -webkit-animation-name: spincube;<br /><br />     -webkit-animation-timing-function: ease-in-out;<br /><br />     -webkit-animation-iteration-count: infinite;<br /><br />     -webkit-animation-duration: 12s;<br /><br /><br /><br />     animation-name: spincube;<br /><br />     animation-timing-function: ease-in-out;<br /><br />     animation-iteration-count: infinite;<br /><br />     animation-duration: 12s;<br /><br /><br /><br />     -webkit-transform-style: preserve-3d;<br /><br />     -moz-transform-style: preserve-3d;<br /><br />     -ms-transform-style: preserve-3d;<br /><br />     transform-style: preserve-3d;<br /><br /><br /><br />     -webkit-transform-origin: 60px 60px 0;<br /><br />     -moz-transform-origin: 60px 60px 0;<br /><br />     -ms-transform-origin: 60px 60px 0;<br /><br />     transform-origin: 60px 60px 0;<br /><br />   }<br /><br /><br /><br />   .cubespinner div {<br /><br />     position: absolute;<br /><br />     width: 300px;<br /><br />     height: 300px;<br /><br />     background: rgba(255,255,255,0.9);<br /><br />     line-height:200px;<br /><br />     text-align: center;<br /><br />     font-size: 50px;<br /><br />   }<br /><br /><br /><br />   .cubespinner .face1 {<br /><br />     color: CadetBlue;<br /><br />     -webkit-transform: translateZ(60px);<br /><br />     -moz-transform: translateZ(60px);<br /><br />     -ms-transform: translateZ(60px);<br /><br />     transform: translateZ(60px);<br /><br />   }<br /><br />   .cubespinner .face2 {<br /><br />     color: ForestGreen;<br /><br />     -webkit-transform: rotateY(90deg) translateZ(60px);<br /><br />     -moz-transform: rotateY(90deg) translateZ(60px);<br /><br />     -ms-transform: rotateY(90deg) translateZ(60px);<br /><br />     transform: rotateY(90deg) translateZ(60px);<br /><br />   }<br /><br />   .cubespinner .face3 {<br /><br />     color: blue;<br /><br />     -webkit-transform: rotateY(90deg) rotateX(90deg) translateZ(60px);<br /><br />     -moz-transform: rotateY(90deg) rotateX(90deg) translateZ(60px);<br /><br />     -ms-transform: rotateY(90deg) rotateX(90deg) translateZ(60px);<br /><br />     transform: rotateY(90deg) rotateX(90deg) translateZ(60px);<br /><br />   }<br /><br />   .cubespinner .face4 {<br /><br />     color: orange;<br /><br />     -webkit-transform: rotateY(180deg) rotateZ(90deg) translateZ(60px);<br /><br />     -moz-transform: rotateY(180deg) rotateZ(90deg) translateZ(60px);<br /><br />     -ms-transform: rotateY(180deg) rotateZ(90deg) translateZ(60px);<br /><br />     transform: rotateY(180deg) rotateZ(90deg) translateZ(60px);<br /><br />   }<br /><br />   .cubespinner .face5 {<br /><br />     color: red;<br /><br />     -webkit-transform: rotateY(-90deg) rotateZ(90deg) translateZ(60px);<br /><br />     -moz-transform: rotateY(-90deg) rotateZ(90deg) translateZ(60px);<br /><br />     -ms-transform: rotateY(-90deg) rotateZ(90deg) translateZ(60px);<br /><br />     transform: rotateY(-90deg) rotateZ(90deg) translateZ(60px);<br /><br />   }<br /><br />   .cubespinner .face6 {<br /><br />     color: DarkSlateGray;<br /><br />     -webkit-transform: rotateX(-90deg) translateZ(60px);<br /><br />     -moz-transform: rotateX(-90deg) translateZ(60px);<br /><br />     -ms-transform: rotateX(-90deg) translateZ(60px);<br /><br />     transform: rotateX(-90deg) translateZ(60px);<br /><br />   }<br /><br /> &lt;/style&gt;<br /><br />   &lt;/body&gt;<br /><br /> &lt;/html&gt;
Attachments:
Answered by badrinathgpm123
1

Step-by-step explanation:

Consider the equation x = 2 .

If this is treated as an equation in

one variable x, then it has the unique

solution x = 2 which is a point on

the number line .

When x = 2 treated as an equation

in two variables and plotted on the

coordinate plane it can be expressed

as x + 0×y - 2 = 0.

••••

This has infinitly many solutions.

Similar questions