Give the Hybridisation in SF4 and XeF4 molecule.
Answers
Answered by
0
Answer:
boxed{\mathfrak{Work \ done \ by \ the \ force = zero}}Work done by the force=zero
Given:
Force \rm (\overrightarrow{F}) = 4 \hat{i} + 5\hat{j}(F)=4i^+5j^
Displacement \rm (\overrightarrow{d}) = 5 \hat{i} - 4 \hat{j}(d)=5i^−4j^
Explanation:
Work done (W) is dot product of force vector and displacement vector i.e.
\boxed{ \bold{ W = \overrightarrow{F}.\overrightarrow{d}}}W=F.d
By substituting values in the equation we get:
\begin{gathered}\rm \implies W = (4\hat{i} + 5\hat{j} ).(5\hat{i} - 4\hat{j} ) \\ \\ \rm \implies W =4 \times 5 - 5 \times 4 \\ \\ \rm \implies W = 20 - 20 \\ \\ \rm \implies W = 0 \: J\end{gathered}⟹W=(4i^+5j^).(5i^−4j^)⟹W=4×5−5×4⟹W=20−20⟹W=0J
Similar questions