Physics, asked by prinkalgavit2003, 6 months ago

Give the magnitude and direction of the net force acting on a stone of mass 0.1 kg just after it dropped from the window of a train running at constant velocity of 36 km/ h.
plz answer now onLy​

Answers

Answered by mia3651
1

Answer:

(a)1 N; vertically downward

Mass of the stone, m = 0.1 kg

Acceleration of the stone, a = g = 10 m/s2

As per Newton’s second law of motion, the net force acting on the stone,

F = ma = mg

= 0.1 × 10 = 1 N

Acceleration due to gravity always acts in the downward direction.

(b)1 N; vertically downward

The train is moving with a constant velocity. Hence, its acceleration is zero in the direction of its motion, i.e., in the horizontal direction. Hence, no force is acting on the stone in the horizontal direction.

The net force acting on the stone is because of acceleration due to gravity and it always acts vertically downward. The magnitude of this force is 1 N.

Answered by yuvas1611831
1

Answer:

(a)1 N; vertically downward

Mass of the stone, m = 0.1 kg

Acceleration of the stone, a = g = 10 m/s2

As per Newton's second law of motion, the net force acting on the stone,

F = ma = mg

= 0.1 x 10 = 1 N

Acceleration due to gravity always acts in the downward direction.

(b)1 N; vertically downward

The train is moving with a constant velocity. Hence, its acceleration is zero in the direction of its motion, i.e., in the horizontal direction. Hence, no force is acting on the stone in the horizontal direction.

The net force acting on the stone is because of acceleration due to gravity and it always acts vertically downward. The magnitude of this force is 1 N.

Similar questions