Give the proof of Heron's Formula
Answers
Answer:
Algebraic proof using the Pythagorean theorem Edit
Triangle with altitude h cutting base c into d + (c − d).
The following proof is very similar to one given by Raifaizen.[7] By the Pythagorean theorem we have b2 = h2 + d2 and a2 = h2 + (c − d)2 according to the figure at the right. Subtracting these yields a2 − b2 = c2 − 2cd. This equation allows us to express d in terms of the sides of the triangle:
{\displaystyle d={\frac {-a^{2}+b^{2}+c^{2}}{2c}}} d=\frac{-a^2+b^2+c^2}{2c}
For the height of the triangle we have that h2 = b2 − d2. By replacing d with the formula given above and applying the difference of squares identity we get
{\displaystyle {\begin{aligned}h^{2}&=b^{2}-\left({\frac {-a^{2}+b^{2}+c^{2}}{2c}}\right)^{2}\\&={\frac {(2bc-a^{2}+b^{2}+c^{2})(2bc+a^{2}-b^{2}-c^{2})}{4c^{2}}}\\&={\frac {((b+c)^{2}-a^{2})(a^{2}-(b-c)^{2})}{4c^{2}}}\\&={\frac {(b+c-a)(b+c+a)(a+b-c)(a-b+c)}{4c^{2}}}\\&={\frac {2(s-a)\cdot 2s\cdot 2(s-c)\cdot 2(s-b)}{4c^{2}}}\\&={\frac {4s(s-a)(s-b)(s-c)}{c^{2}}}\end{aligned}}}
\begin{align}
h^2 & = b^2-\left(\frac{-a^2+b^2+c^2}{2c}\right)^2\\
& = \frac{(2bc-a^2+b^2+c^2)(2bc+a^2-b^2-c^2)}{4c^2}\\
& = \frac{((b+c)^2-a^2)(a^2-(b-c)^2)}{4c^2}\\
& = \frac{(b+c-a)(b+c+a)(a+b-c)(a-b+c)}{4c^2}\\
& = \frac{2(s-a)\cdot 2s\cdot 2(s-c)\cdot 2(s-b)}{4c^2}\\
& = \frac{4s(s-a)(s-b)(s-c)}{c^2}
\end{align}
We now apply this result to the formula that calculates the area of a triangle from its height:
{\displaystyle {\begin{aligned}A&={\frac {ch}{2}}\\&={\sqrt {{\frac {c^{2}}{4}}\cdot {\frac {4s(s-a)(s-b)(s-c)}{c^{2}}}}}\\&={\sqrt {s(s-a)(s-b)(s-c)}}\end{aligned}}}
\begin{align}
A & = \frac{ch}{2}\\
& = \sqrt{\frac{c^2}{4}\cdot \frac{4s(s-a)(s-b)(s-c)}{c^2}}\\
& = \sqrt{s(s-a)(s-b)(s-c)}
\end{align}