give the right answer
Attachments:
Answers
Answered by
4
Step-by-step explanation:
Sin⁸θ-cos⁸θ
=(sin⁴θ)²-(cos⁴θ)²
=(sin⁴θ+cos⁴θ)(sin⁴θ-cos⁴θ)
={(sin²θ)²+(cos²θ)²}{(sin²θ)²-(cos²θ)²}
={(sin²θ+cos²θ)²-2sin²θcos²θ}{(sin²θ+cos²θ)(sin²θ-cos²θ)}
={(1)²-2sin²θcos²θ}{(1)(sin²θ-cos²θ)} [∵, sin²θ+cos²θ=1]
=(sin²θ-cos²θ)(1-2sin²θcos²θ) (Proved)
Answered by
24
To Prove
(cos^8∅ - sin^8∅) = (cos²∅ - sin²∅)(1 - 2 sin²∅ cos²∅)
Proving
L.H.S → (cos^8∅ - sin^8∅) = (cos⁴∅)² - (sin⁴∅)²
→ (cos⁴∅ + sin⁴∅)(cos⁴∅ - sin⁴∅)
→ [(cos²∅ + sin²∅)² - 2cos²∅sin²∅][cos²∅ + sin²∅](cos²∅ - sin²∅)
Since cos²∅ + sin²∅ = 1,
→ (1 - 2cos²∅ sin²∅)(cos²∅ - sin²∅) = R.H.S
Hence Proved
Similar questions