CBSE BOARD X, asked by YashRajpootThakur1, 1 year ago

☞Give the solution of this question.

✔✔ Correct and easy way of solution will be mark as a brainlist.

Attachments:

Answers

Answered by Anonymous
5

HELLO!

Sum of m terms of an A.P. = m/2 [2a + (m -1)d]

Sum of n terms of an A.P. = n/2 [2a + (n -1)d]

m/2 [2a + (m -1)d] / n/2 [2a + (n -1)d] = m:n

⇒ [2a + md - d] / [2a + nd - d] = m/n

⇒ 2an + mnd - nd = 2am + mnd - md

⇒ 2an - 2am = nd - md

⇒ 2a (n -m) = d(n - m)

⇒ 2a = d

Ratio of m th term to nth term:

[a + (m - 1)d] / [a + (n - 1)d]

= [a + (m - 1)2a] / [a + (n - 1)2a]

= a [1 + 2m - 2] / a[1 + 2n -2]

= (2m - 1) / (2n -1)

So, the ratio of mth term and the nth term of the arithmetic series is (2m - 1):(2n -1).

KEEP SMILING

:)

Answered by prabhatiit2005
2

Sum of m terms of an A.P. = m/2 [2a + (m -1)d]

Sum of n terms of an A.P. = n/2 [2a + (n -1)d]

m/2 [2a + (m -1)d] / n/2 [2a + (n -1)d] = m:n

⇒ [2a + md - d] / [2a + nd - d] = m/n

⇒ 2an + mnd - nd = 2am + mnd - md

⇒ 2an - 2am = nd - md

⇒ 2a (n -m) = d(n - m)

⇒ 2a = d


Ratio of m th term to nth term:

[a + (m - 1)d] / [a + (n - 1)d]

= [a + (m - 1)2a] / [a + (n - 1)2a]

= a [1 + 2m - 2] / a[1 + 2n -2]

= (2m - 1) / (2n -1)

So, the ratio of mth term and the nth term of the arithmetic series is

(2m - 1):(2n -1).


Please mark it as brainliest answer....


Similar questions