Physics, asked by saniakamal11, 9 months ago

give the solved explaination​

Attachments:

Answers

Answered by BrainlyConqueror0901
3

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline  \bold{Given :}} \\   \tt: \implies Displacement \: of \: particle \: in \: n \: sec =  s_{n} \\  \\ \tt: \implies Diplacement \: of \: particle \: in \: (n - 1) \: sec =  s_{n - 1} \\  \\ \red{\underline  \bold{To \: Show :}} \\  \tt:  \implies  s_{nth} = u +  \frac{a}{2} (2n - 1)

• According to given question :

 \tt \circ \:  v_{(n - 1)} = Velocity \: at \: the \: begining \: of \:   {(n - 1)}\: sec  \\  \\  \tt \circ \:  v_{n}   = Velocity \: at \: the \: end \: of \:  n \: sec \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  v_{(n - 1)}   = u + at \\  \\  \tt:  \implies  v_{(n - 1)}   =u + a(n - 1) -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\  \tt:  \implies  v_{n}   =u + at \\  \\ \tt:  \implies  v_{n }   =u + an -  -  -  -  - (2) \\  \\  \bold{For \: average \: velocity \: in \:  {n}^{th}  \: sec} \\  \tt: \implies  v_{Avg} =   \frac{v_{(n - 1)} +  v_{n}}{2} \\  \\ \tt: \implies  v_{Avg} =  \frac{u + a(n - 1) + u + an}{2}  \\  \\ \tt: \implies  v_{Avg} = u +  \frac{a}{2} (2n - 1) -  -  -  -  - (3) \\  \\  \bold{Distance \: traversed \: during \: this \: one \: sec} \\  \tt:  \implies  s_{nth} =   v_{Avg} \times t \\  \\ \tt:  \implies  s_{nth} =   \bigg(u +  \frac{a}{2} (2n - 1) \bigg) \times 1 \\  \\ \green{\tt:  \implies  s_{nth} =   u +  \frac{a}{2} (2n - 1)}   \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \huge{\boxed{\bold{Derived : }}}}

Similar questions