Give the sources of actinide elements.
answer limit 50 word
Answers
Answer:
The actinoid /ˈæktɪnɔɪd/ (IUPAC nomenclature, also called actinide[1] /ˈæktɪnaɪd/) series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinoid series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinoid chemistry to refer to any actinoid.[2][3][4]
Strictly speaking, actinium has been labeled as group 3 element, but is often included in any general discussion of the chemistry of the actinoid elements. Since "actinoid" means "actinium-like" (cf. humanoid or android), it has been argued due semantic reasons that actinium cannot logically be an actinoid, but IUPAC acknowledges its inclusion based on common usage.[5]
All but one of the actinides are f-block elements, with the exception being either actinium or lawrencium. The series mostly corresponds to the filling of the 5f electron shell, although actinium and thorium lack any 5f electrons, and curium and lawrencium have the same number as the preceding element. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. They all have very large atomic and ionic radii and exhibit an unusually large range of physical properties. While actinium and the late actinides (from americium onwards) behave similarly to the lanthanides, the elements thorium, protactinium, and uranium are much more similar to transition metals in their chemistry, with neptunium and plutonium occupying an intermediate position.
All actinides are radioactive and release energy upon radioactive decay; naturally occurring uranium and thorium, and synthetically produced plutonium are the most abundant actinides on Earth. These are used in nuclear reactors and nuclear weapons. Uranium and thorium also have diverse current or historical uses, and americium is used in the ionization chambers of most modern smoke detectors.
Of the actinides, primordial thorium and uranium occur naturally in substantial quantities. The radioactive decay of uranium produces transient amounts of actinium and protactinium, and atoms of neptunium and plutonium are occasionally produced from transmutation reactions in uranium ores. The other actinides are purely synthetic elements.[2][6] Nuclear weapons tests have released at least six actinides heavier than plutonium into the environment; analysis of debris from a 1952 hydrogen bomb explosion showed the presence of americium, curium, berkelium, californium, einsteinium and fermium.[7]
In presentations of the periodic table, the lanthanides and the actinides are customarily shown as two additional rows below the main body of the table,[2] with placeholders or else a selected single element of each series (either lanthanum or lutetium, and either actinium or lawrencium, respectively) shown in a single cell of the main table, between barium and hafnium, and radium and rutherfordium, respectively. This convention is entirely a matter of aesthetics and formatting practicality; a rarely used wide-formatted periodic table inserts the lanthanide and actinide series in their proper places, as parts of the table's sixth and seventh rows (periods).
Explanation:
Mark me as brainliest.