Math, asked by ferleneregalado, 2 months ago

give the standard form of the circle whose center is (-10,3) and radius is 7. Show your solution.​

Answers

Answered by amansharma264
5

EXPLANATION.

Standard equation of circle,

Whose center of circle = (-10,3).

Radius of the circle = 7.

As we know that,

General equation of circle,

⇒ x² + y² + 2gx + 2fy + c = 0.

We can write as,

⇒ (x - h)² + (y - k)² = (r)².

⇒ Center = (-10,3) = (h, k).

⇒ r = 7.

Put the values in the equation, we get.

⇒ (x - (-10))² + (y - 3)² = (7)².

⇒ (x + 10)² + (y - 3)² = (7)².

As we know that,

Formula of :

⇒ (x + y)² = x² + y² + 2xy.

Using this formula in equation, we get.

⇒ (x² + 100 + 20x) + (y² + 9 - 6y) = 49.

⇒ x² + 100 + 20x + y² + 9 - 6y - 49 = 0.

⇒ x² + y² + 20x - 6y + 60 = 0.

                                                                                                                           

MORE INFORMATION.

The parametric equation of a circle.

(1) = The parametric equation of a circle x² + y² = r². are x = r cosθ , y = r sinθ.

(2) = The parametric equations of the circle (x - h)² + (y - k)² = r² are x = h + r cosθ , y = k + r sinθ.

(3) = Parametric equations of the circle x² + y² + 2gx + 2fy + c = 0 are x = - g + √g² + f² - c  cosθ , y = - f + √g² + f² - c  sinθ.

Answered by ItzGreek
1

Explaination :-

Standard equation of circle,

Whose center of circle = (-10,3).

Radius of the circle = 7.

As we know that,

General equation of circle,

→ x² + y² + 2gx + 2fy + c = 0.

We can write as,

→ (xh)² + (y-k)² = (r)².

→ Center = (-10,3)= (h, k).

⇒ r = 7.

Put the values in the equation, we get.

→ (x - (-10))² + (y - 3)² = (7)².

→ (x+10)² + (y - 3)² = (7)².

 \\

As we know that,

Formula of:

⇒ (x + y)² = x² + y² + 2xy.

Using this formula in equation, we get.

(x² + 100 + 20x) + (y² + 9 - 6y) = 49.

→ x² + y² + 20x - 6y + 60 = 0.

→ x² + 100 + 20x + y² +9-6y - 49 = 0.

 \\  \\

Thank You*

Similar questions