Physics, asked by hanspalsingh1977, 1 month ago

Give the values of sine, cosine and tan for the angles 37°,45°, 60°​

Answers

Answered by Aryan0123
2

sin 37°

For finding the value of sin 37° consider a right angled triangle with sides 3 cm, 4 cm, 5 cm.

(Refer to the attachment)

sin 37° = Opposite ÷ Hypotenuse = 3/5

∴ sin 37° = 3/5

\\

cos 37°

In the same triangle,

cos 37° = Adjacent ÷ Hypotenuse = 4/5

cos 37° = 4/5

\\

tan 37°

In the same triangle,

tan 37° = sin 37° ÷ cos 37° = 3/4

∴ tan 37° = 3/4

\\

For all other values refer this table

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\bf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions