Math, asked by sadariadaksh, 6 months ago

Give zeroes of quadradic polynomial x² + 2x– 15.

(A) 3 and 5

(B) –3 and –5

(C) 3 and –5

(D) –3 and 5​

Answers

Answered by Anonymous
3

Question:-

\sf{To\: find \:the \:zeroes\: of \:the\: polynomial = x^2 + 2x - 15}

Solution:-

\sf{p(x) = x^2 + 2x - 15 = 0}

= \sf{x^2 + 5x - 3x - 15 = 0}

= \sf{x(x + 5) - 3(x + 5) = 0}

= \sf{(x+5)(x-3) = 0}

Either,

\sf{x + 5 = 0}

=> \sf{x = -5}

Or,

\sf{x - 3 = 0}

=> \sf{x = 3}

\sf{\therefore The\:zeroes\:of\:the\:polynomial\:x^2+2x-15\:are\:3\:and\:-5}

Verification:-

\sf{Sum\:of\:zeroes = \dfrac{-Coefficient\:of\:x}{Coefficient\:of\:x^2}}

= \sf{3 + (-5) = \dfrac{-2}{1}}

= \sf{-2 = -2 \:\:\:[Verified]}

\sf{Product\:of\:zeroes = \dfrac{Constant\:term}{Coefficient\:of\:x^2}}

= \sf{3\times -5 = \dfrac{-15}{1}}

= \sf{-15 = -15 [Verified]}

\sf{\therefore Option(C)\: is\:the\:correct\:answer}

Similar questions