Math, asked by Riea45, 8 months ago

given 1 + cos alpha + { cos ^2 } alpha +..... Infinity = 2 - √2'then ( 0 < alpha < pi) is =? ​

Answers

Answered by Anonymous
14

{ \bf{ \underline{ \blue{ \underline{ \blue{ Given}}}}  :  - }}

  \\  \rm \implies 1 +  \cos( \alpha )  +  { \cos}^{2} ( \alpha ) + ...... \infty  = 2 -  \sqrt{2}  \\

{ \bf{ \underline{ \blue{ \underline{ \blue{ To-Find}}}}  :  - }}

  \\   \to \rm \alpha(0 &lt;  \alpha  &lt; \pi)  = ?  \\

{ \bf{ \underline{ \blue{ \underline{ \blue{ Solution }}}}  :  - }}

Given that,

  \\  \rm \implies 1 +  \cos( \alpha )  +  { \cos}^{2} ( \alpha ) + ...... \infty  = 2 -  \sqrt{2}  \\

We know that, sum of infinite G.P. series is –

  \\  \dashrightarrow \: { \boxed{ \rm S_{n}  =  \dfrac{a}{1 - r}}} \\

Where,

  \\  \rm \:\:\:  { \huge{.}} \:\:\: a = 1\\

  \\  \rm \:\:\:  { \huge{.}} \:\:\: r =  \cos( \alpha ) \\

Again,

  \\  \rm \implies  \dfrac{1}{1 -  \cos( \alpha ) }   = 2 -  \sqrt{2}  \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{1}{2 -  \sqrt{2}}  \\

( Rationalization )

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{1}{2 -  \sqrt{2}} \times  \dfrac{2 +  \sqrt{2} }{2 +  \sqrt{2} }   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{(2 -  \sqrt{2})(2 +  \sqrt{2})}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{(2)^{2}  -  (\sqrt{2})^{2}}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{4 - 2}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   =  \dfrac{2 +  \sqrt{2} }{2}   \\

  \\  \rm \implies 1 -  \cos( \alpha )   = 1 +  \dfrac{1}{ \sqrt{2} }  \\

  \\  \rm \implies   \cos( \alpha )   =    - \dfrac{1}{ \sqrt{2} }  \\

  \\  \rm \implies   \cos( \alpha )   =     \cos \left( \dfrac{\pi}{2} +  \dfrac{\pi}{4} \right)  \\

  \\  \rm \implies   \cos( \alpha )   =     \cos \left( \dfrac{3\pi}{4} \right)  \\

  \\  \rm \implies  \alpha  = \dfrac{3\pi}{4} \in \left(0 &lt;  \alpha  &lt; \pi \right)\\

\small{\underline{\sf{\blue{Hence-}}}}

It’s the required answer.

Answered by divyanshparekh
0

Step-by-step explanation:

Using infinite gp series

a/1-r

1/1-cos alpha = 2-2√2

(2-2√2)(1-cos alpha)= 1

2-2cos alpha -2√2 +2√2 cos alpha = 1

-2cos alpha +2√2 cos alpha = 1-2+2√2

-2cos alpha (1-√2) = 1-2+2√2

cos alpha = 1-2+2√2 / -2(1-√2)

Therefore solving this you get alpha= 3 pi/4

Similar questions