Math, asked by sejego3838, 10 months ago

GIVEN 15 COT A =8, find sin A and sec A

Answers

Answered by Anonymous
20
<marquee>answer is in attachment<marquee>
Attachments:
Answered by Disha976
8

Given that,

 \rm { \qquad • 15 cot \: A = 8 }

_________

We have to find,

 \rm { \qquad • sin \: A \: and \: sec \: A }

_________

Solution,

If  \rm {15 cot \: A = 8 } , then  \rm { cot \: A = \dfrac{8}{15} }

We know that ,

 \rm { \qquad • cot \: A = \dfrac{Base}{Perpendicular}}

Hence,

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2}+{P}^{2} }

 \rm\leadsto { {H}^{2} = {8}^{2}+{15}^{2} }

 \rm\leadsto { {H}^{2} = 64+ 225}

 \rm\leadsto { {H }^{2} = 289}

 \leadsto\rm\blue { H = \sqrt{289} = 17}

_____________

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

 \rm { \qquad •  Hypotenuse = 17 }

 \qquad

 \rm\red { \leadsto sin \: A = \dfrac{ Perpendicular}{Hypotenuse} =\dfrac{15}{17} }

 \qquad

 \rm\red { \leadsto sec \: A = \dfrac{ Hypotenuse}{Base} =\dfrac{17}{8} }

Attachments:
Similar questions