Math, asked by unknownsoul276, 8 months ago

Given 15 cot A = 8, find sin A and sec A.​

Answers

Answered by amansharma264
2

EXPLANATION.

  • GIVEN

15 cot A = 8

cot A = 8/15 = b/p

Therefore,

h^2 = p^2 + b^2

h^2 = (15) ^2 + (8) ^2

h^2 = 225 + 64

h^2 = 289

h = 17

Therefore,

sin A = 15/17

sec A = 17/8

More information

cos A = 8/17

tan A = 15/8

cosec A = 17/15

cot A = 8/15

Formula

 \bold1) =  \sin {}^{2} ( \theta)  +  \cos {}^{2} (  \theta)  = 1

 \bold2) = 1 +  \tan {}^{2} ( \theta)  =  \sec {}^{2} ( \theta)

 \bold3) = 1 +  \cot {}^{2} ( \theta)  =  \csc {}^{2} ( \theta)

Answered by Anonymous
2

here is ur ans ❤

15cot A=8

cot A 8/15

cotA=8/15=base/height

................... ...........................

let the height be 15xand base be 8x

by pythagoras theorem ,

(15x)^2+(8x)^2=hypotenuse

(225+64)x^2=hypotenuse^2

289x^2=hypotenunse ^2

17x=hypotenuse

.........................................................

..............

Now,

sin A=height /hypotenunse

sin A =15/17

AND

sec A =hypotenuse / base

sec A =15/8

hope it helps❤

itzkhushi❤❤

Similar questions