Given 15 cot A = 8, find sin A and sec A.
Answers
Answered by
2
EXPLANATION.
- GIVEN
15 cot A = 8
cot A = 8/15 = b/p
Therefore,
h^2 = p^2 + b^2
h^2 = (15) ^2 + (8) ^2
h^2 = 225 + 64
h^2 = 289
h = 17
Therefore,
sin A = 15/17
sec A = 17/8
More information
cos A = 8/17
tan A = 15/8
cosec A = 17/15
cot A = 8/15
Formula
Answered by
2
here is ur ans ❤
15cot A=8
cot A 8/15
cotA=8/15=base/height
................... ...........................
let the height be 15xand base be 8x
by pythagoras theorem ,
(15x)^2+(8x)^2=hypotenuse
(225+64)x^2=hypotenuse^2
289x^2=hypotenunse ^2
17x=hypotenuse
.........................................................
..............
Now,
sin A=height /hypotenunse
sin A =15/17
AND
sec A =hypotenuse / base
sec A =15/8
hope it helps❤
itzkhushi❤❤
Similar questions