Math, asked by ayesha1309, 6 months ago

given 15 cot A=8 find sin A and sec A​

Answers

Answered by spacelover123
4

Given

  • 15 cot A = 8

_____________________________

To Find

  • sin A
  • sec A

_____________________________

Solution

⇒ 15 cot A = 8

⇒ cot A = \dfrac{8}{15}\

Also,

⇒ cot A = \dfrac{1}{tan \ A}

⇒ cot A = \dfrac{1}{\frac{CB}{AB}}

⇒ cot A = \bf \dfrac{AB}{CB}

Hence, let's assume side AB to be '8x' and side CB to be '15x' since they are in the ratio of 8:15.

_____________________________

Considering, ABC to be a right angled triangle, let's find it's hypotenuse.

⇒ AC² = AB² + BC²           (Pythagoras Theorem)

⇒ AC² = (8x)² + (15x)²

⇒ AC² = 64x² + 225x²

⇒ AC² = 289x²

⇒ AC = √289x²

⇒ AC = 17x

∴ AC is 17x.

_____________________________

Now,

⇒ sin A = \dfrac{BC}{AC}

⇒ sin A = \dfrac{15x}{17x}

⇒ sin A = \bf \dfrac{15}{17}

_____________________________

Also,

⇒ sec A = \dfrac{1}{cos \ A}

⇒ sec A = \dfrac{1}{\frac{AB}{AC}}

⇒ sec A = \dfrac{AC}{AB}

⇒ sec A = \dfrac{17x}{8x}

⇒ sec A = \bf \dfrac{8}{5}

∴ sin A = \bf \dfrac{15}{17} and sec A = \bf \dfrac{8}{5}.

_____________________________

Attachments:
Similar questions