Math, asked by adarsh6930, 1 year ago

Given 15 cot A=8 find sin A and sec A

Answers

Answered by simransamrat3
9
cot A = 8 / 5 ( cot = b/ p )

Now;

p^2+b^2 = h^2


(5)^2 + (8)^2= h^2


25 + 64 = h^2

h^2 = 89

h = _/89

sin A = 5 / _/ 89( sinA = p/ h )

secA = _/89 / 8 ( h/ b)

I hope it will help u plz mark it as a brainlist ans plzzzzzz

bebo632: yaar btaega tabhi toh sochunga
bebo632: abey bta jada footage mat kha
bebo632: hmm jaa bey mar jaa saale
bebo632: bc
Answered by Disha976
5

Given that,

 \rm { \qquad • 15 cot \: A = 8 }

_________

We have to find,

 \rm { \qquad • sin \: A \: and \: sec \: A }

_________

Solution,

If  \rm {15 cot \: A = 8 } , then  \rm { cot \: A = \dfrac{8}{15} }

We know that ,

 \rm { \qquad • cot \: A = \dfrac{Base}{Perpendicular}}

Hence,

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2}+{P}^{2} }

 \rm\leadsto { {H}^{2} = {8}^{2}+{15}^{2} }

 \rm\leadsto { {H}^{2} = 64+ 225}

 \rm\leadsto { {H }^{2} = 289}

 \leadsto\rm\blue { H = \sqrt{289} = 17}

_____________

 \rm { \qquad •  Base = 8 }

 \rm { \qquad •  Perpendicular = 15 }

 \rm { \qquad •  Hypotenuse = 17 }

 \qquad

 \rm\red { \leadsto sin \: A = \dfrac{ Perpendicular}{Hypotenuse} =\dfrac{15}{17} }

 \qquad

 \rm\red { \leadsto sec \: A = \dfrac{ Hypotenuse}{Base} =\dfrac{17}{8} }

Attachments:
Similar questions