Math, asked by mileygrace, 5 months ago

given 15 cot A = 8 find sin square A​

Answers

Answered by aadityagupta1146
1

Answer:

17

15

Step-by-step explanation:

Given,

15cotA=8

cotA=

15

8

=> tanA=

8

15

-------(tanA=

cotA

1

)

We know that,

tanθ=

adjacentSide

oppositeSide

Consider the attached figure, triangleABC

From Pythagoras theorem,

AC

2

=AB

2

+BC

2

AC

2

=8

2

+15

2

=64+225=289

AC=17

cosA=

Hypotenuse

adjacentSide

=

AC

AB

=

17

8

secA=

cosA

1

=

17

8

1

8

17

sinA=

Hypotenuse

oppositeSide

=

AC

BC

=

17

15

plz follow me and Mark as brainliest

Answered by swetakumari46
6

 \large{ \bold{ \cot( \alpha ) =  \frac{8}{15}  }} \\  \\

 \large{ \bold{1 +  { \cot( \alpha ) }^{2}  =  { \csc( \alpha ) }^{2} }} \\  \\

 \large{ \bold{1 +  \frac{64}{225}  =  { \csc( \alpha ) }^{2} }} \\  \\

 \large{ \bold{ \frac{225 + 64}{225}  =  { \csc( \alpha ) }^{2} }} \\  \\

 \large{ \bold{ \frac{289}{225}  =  { \csc( \alpha ) }^{2} }} \\  \\

 \large{ \bold{ \pink{ { \sin( \alpha ) }^{2}  =  \frac{225}{289} }}} \\  \\

Similar questions