Given 15 cot A = 8 find the value of all trigonometric ratio.
Answers
Answered by
29
Cot A = 8/15 = b/p
p= 15 , b = 8
h = √(b^2+p^2)
= √(64+225)
= √ (289)
= 17
Sin A = p/h = 15/17
cosA = b/h = 8/17
tanA = p/b = 15/8
secA = h/b = 17/8
cosec A = h/p = 17/15
Hope it helps
p= 15 , b = 8
h = √(b^2+p^2)
= √(64+225)
= √ (289)
= 17
Sin A = p/h = 15/17
cosA = b/h = 8/17
tanA = p/b = 15/8
secA = h/b = 17/8
cosec A = h/p = 17/15
Hope it helps
Answered by
21
CotA =8/15
B/P =8k / 15k
By pythagoreous theorem
(H)² =B² + P²
= (8k)² + (15k)²
= 64k² + 225k²
= 289k²
H = 17k
Sin A = 15/17
Cos A = 8/17
Tan A = 15/8
Sec A = 17/8
Cosec A = 17/15
B/P =8k / 15k
By pythagoreous theorem
(H)² =B² + P²
= (8k)² + (15k)²
= 64k² + 225k²
= 289k²
H = 17k
Sin A = 15/17
Cos A = 8/17
Tan A = 15/8
Sec A = 17/8
Cosec A = 17/15
Similar questions