Math, asked by singhasahil246, 8 months ago

Given 15 cotA=8,find sinA and secA​

Answers

Answered by Anonymous
1

  {\boxed {\tt{GIVEN:-}}}

 \tt{15 \cot A = 8}

  {\boxed {\tt{FIND:-}}}

 \tt{ \sin A \: and \:  \sec A}

  {\boxed {\tt{SOLUTION:-}}}

 \tt{draw \: a \: right \:  \triangle ABC \: in \: which \:  \angle B = 90 \degree}

 \tt{given \: in \: attachment}

 \tt{now \: we \: have}

 \tt{15 \cot A = 8 \:  \:  \:  \:  \cot  A =  \frac{8}{15}  =  \frac{AB}{BC} }

 \tt{ =  \frac{base}{perpendicular}  }

\tt {let \: AB = 8k  \:  and \: BC = 15k}

 \tt then \: AC =  \sqrt{(AB {)}^{2} + ( {BC)}^{2}  }  \:  \:  \: (pythogoras \: theorem)

 \tt  AC =  \sqrt{(8k {)}^{2} + ( {15k)}^{2}  }  \\  =   \tt \sqrt{ {64k}^{2}  + {225}^{2}  }  =  \sqrt{ {289k}^{2} }

 \tt  = 17k

 \tt   \sin   A =  \frac{perpendicular}{hypotenuse}  =  \frac{BC} {AC}=  \frac{15 \cancel k}{17\cancel k}  =  \frac{15} {17}

 \tt  \sec  A =  \frac{hypotenuse}{base}  =  \frac{AC}{   AB}=  \frac{17 \cancel k}{8\cancel k}  =  \frac{17} {8}

Attachments:
Answered by vikramkumar64296
0

Answer:

I hope get your ans mark me in brainly. . . . . . .

Attachments:
Similar questions