Math, asked by sanupal328, 1 month ago

Given 15 theta =pi
This is from trigonometry​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\bold{Given \:Question - }}

Prove that

\rm :\longmapsto\:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos7\theta  = \dfrac{1}{ {2}^{7} }

when

\rm :\longmapsto\:15\theta  = \pi

\begin{gathered}\large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \: cos(\pi - \theta ) =  - cos\theta }}

 \boxed{ \bf{ \: sin(\pi - \theta ) = sin\theta }}

 \boxed{ \bf{ \: sin(\pi  +  \theta ) = -  \:  sin\theta }}

 \boxed{ \bf{ \: cosxcos {2}^{2}xcos {2}^{3}x -  -  -  - cos {2}^{n}x =  \frac{sin {2}^{n + 1} x}{ {2}^{n + 1} sinx}  }}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: 15\theta \:  =  \: \pi

Now, Consider,

\rm :\longmapsto\:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos7\theta

can be rewritten as

\rm \:  =  \:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos(15\theta  - 8\theta )

\rm \:  =  \:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos(\pi  - 8\theta )

\rm \:  =  -  \:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos8\theta

can be further rearrange as

\rm \:  =  \: -  \: [cos\theta cos2\theta cos4\theta cos8\theta ] \: [cos3\theta cos6\theta ] \: cos5\theta

\rm \:  =  \: - [cos\theta cos2\theta cos {2}^{2}\theta cos {2}^{3}\theta ] \: [cos3\theta cos2(3\theta )] \: cos5\theta

\rm \:  =  \: -  \: \bigg[\dfrac{sin {2}^{3 + 1} \theta }{ {2}^{3 + 1}sin\theta  } \bigg] \: \bigg[\dfrac{sin {2}^{1 + 1}3\theta  }{ {2}^{1 + 1} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \: -  \: \bigg[\dfrac{sin {2}^{4} \theta }{ {2}^{4}sin\theta  } \bigg] \: \bigg[\dfrac{sin {2}^{2}(3\theta ) }{ {2}^{2} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \: -  \: \bigg[\dfrac{sin 16 \theta }{ {2}^{4}sin\theta  } \bigg] \: \bigg[\dfrac{sin12\theta}{ {2}^{2} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \: -  \: \bigg[\dfrac{sin( 15 \theta + \theta ) }{ {2}^{4}sin\theta  } \bigg] \: \bigg[\dfrac{sin(15\theta - 3\theta )}{ {2}^{2} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \: -  \: \bigg[\dfrac{sin( \pi+ \theta ) }{ {2}^{4}sin\theta  } \bigg] \: \bigg[\dfrac{sin(\pi - 3\theta )}{ {2}^{2} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \: -  \: \bigg[ - \dfrac{sin\theta }{ {2}^{4}sin\theta  } \bigg] \: \bigg[\dfrac{sin3\theta }{ {2}^{2} sin3\theta } \bigg] \: cos5\theta

\rm \:  =  \:\dfrac{1}{ {2}^{6} }  \times cos\bigg[5 \times \dfrac{\pi}{15} \bigg]

\rm \:  =  \:\dfrac{1}{ {2}^{6} }  \times cos\bigg[\dfrac{\pi}{3} \bigg]

\rm \:  =  \:\dfrac{1}{ {2}^{6} }  \times \dfrac{1}{2}

\rm \:  =  \:\dfrac{1}{ {2}^{7} }

Hence,

\rm :\longmapsto\:cos\theta cos2\theta cos3\theta cos4\theta cos5\theta cos6\theta cos7\theta  = \dfrac{1}{ {2}^{7} }

Similar questions
Math, 9 months ago