Math, asked by Anonymous, 9 months ago

Given 15cot A = 8 find sin A sec A ​

Answers

Answered by Anonymous
43

 \huge\boxed{\fcolorbox{black}{red}{answer}}

Given:-

15 \cot(A)  = 8

To find :-

 \sin(A) \: and \:   \sec(A)

Therefore :-

 \cot(A)  =  \frac{8}{15}

 =  \frac{b}{p}

Base = 8 and

Perpendicular = 15

Find hypotenuse :-

 {a}^{2}  =  {b}^{2}  +  {c}^{2}

✏  {a}^{2}  =  {8}^{2}  +  {15}^{2} </p><p>

✏ {a}^{2}  = 64 + 15</p><p>

✏a =  \sqrt{64 + 225} </p><p>

✏a = 17</p><p>

 \sin(A)  =  \frac{15}{17}

 \sec(A)  =  \frac{17}{8}

Important Formul :-

 \sin(A)  =  \frac{p}{h}

 \cos(A)  =  \frac{b}{h}

 \tan(A)  =  \frac{p}{b}

 \cot(A)  =  \frac{b}{p}

 \sec(A)  =  \frac{h}{b}

 \csc(A)  =  \frac{h}{p}

Answered by Anonymous
6

Given:

 \huge{\sf{15\: cot(A)=8}}

To find :-

 \huge{\sf{sin(A)  and sec(A) }}

Therefore :-

 \huge{\sf{cot(A)  = \frac{8}{15}}

 \huge{\sf{= \frac{b}{p}}

  • Base = 8 and
  • Perpendicular = 15

Find hypotenuse :-

 \huge{\sf{a^2 = b^2+c^2}}

 \huge{\sf{a^2}={ 8^2+15^2}}

 \huge{\sf{64+15}}

 \huge{\sf{\sqrt{64+225}}

 \huge{\sf{a=17}</p><p>[tex] \huge{\sf{sin(A) =\frac{15}{17}}

 \huge{\sf{sec(A)=\frac{17}{8}

Similar questions