Physics, asked by radnyeeraut72, 9 months ago

Given Ā=-2i+ 3j+k and B=i+2j-4k. Unit vector perpendicular to the direction of A and
B:​

Answers

Answered by Cosmique
5

Answer :

  • Unit vector perpendicular to vector \sf{\vec{A}} and \sf{\vec{B}} will be, \sf{\dfrac{-2\;\hat i -2\;\hat j - \hat k}{3}}.

Explanation :

____________________________

Given :

  • \sf{\vec{A}=-2\hat{i}+3\hat{j}+\hat{k}}
  • \sf{\vec{B}=\hat{i}+2\hat{j}-4\hat{k}}

____________________________

To find :

  • A unit vector perpendicular to Vector \sf{\vec{A}} and \sf{\vec{B}}

____________________________

Knowledge required :

  • The cross product of two vectors gives a new vector that will be perpendicular to the two vectors.

Let, \sf{\vec{A},\:\vec{B}\:and\:\vec{C}} be three vectors, as

\sf{\vec{C}=\vec{A} \:\times \: \vec{B}}

then, vector C will be perpendicular to vectors A and B.

  • Finding Unit vector along a given vector

In general, A unit vector along the direction of given vector is be given by,

\sf{n=\dfrac{\vec{A}}{\mid \vec{A} \mid}}

[ where n is the unit vector along the direction of vector \sf{\vec{A}} ]

  • Finding the cross product of two vectors (orthogonal)

Let, two vectors be ;

\sf{\vec{A}=a\hat{i}+b\hat{j}+c\hat{k}\;;\;\vec{B}= d\hat{i}+e\hat{j}+f\hat{k}} and  \sf{\vec{C}=\vec{A} \:\times \: \vec{B}}

then,

\sf{\vec{C}=\vec{A}\:\times\;\vec{B}=}\left[ \begin{array} {c c c} \sf{\hat{i}} &\sf \hat{j} &\sf \hat{k} \\\sf (a) & \sf(b) & \sf(c) \\ \sf(d) &\sf (e) & \sf(f) \end{array}\right]

\sf{\vec{C}=\hat i(bf-ec)-\hat j(af-dc)+\hat k (ae-db)}

____________________________

Solution :

Let, \sf{\vec{C}} be the cross product of given vectors \sf{\vec{A}} and \sf{\vec{B}}

then,

\implies\sf{\vec{C}=\vec{A}\:\times\;\vec{B} =} \left[ \begin{array} {c c c} \sf \hat{i} & \sf\hat{j} &\sf \hat{k} \\ (-2) & (3) & (1) \\ (1) & (2) & (-4) \end{array}\right]

\implies\sf{\vec{C}=\hat i[ (3)(-4) -(2)(1)]-\hat j [(3)(-4)-(2)(1)]+\hat k [(-2)(2)-(1)(3)]}

\underline{\underline{\red{\implies\sf{\vec{C}=-14\;\hat{i} + 14\;\hat{j}-7\;\hat{k}}}}}

Now,

Finding unit vector along the direction of \sf{\vec{C}}

\implies\sf{Required \:unit\:vector=\dfrac{\vec{C}}{\mid \vec{C}\mid}}

\implies\sf{Required \:unit\:vector=\dfrac{-14\;\hat i +14\hat j-7\hat k}{\sqrt{(-14)^2+(14)^2+(-7)^2}}}

\implies\sf{Required \:unit\:vector=\dfrac{-14\;\hat i +14\hat j-7\hat k}{21}}

\boxed{\red{\implies\sf{Required \:unit\:vector=\dfrac{-2\;\hat i +2\hat j-\hat k}{3}}}}

Answer

____________________________

Similar questions